Name :

Roll No:

University of Hyderabad School of Physics

M.Sc.-I/IMSc.-III May 14-Jul 6 (2018) Quantum Mechanics

July 5, 2018 MM: 10

QUIZ-II

A body moves in a central potential V(r). Check if the statements about its motion given below hold in (i) classical theory (ii) in quantum theory or not.

Complete the following table by writing TRUE/FALSE in the second and third columns.

Statement	СМ	QM
Complete solution of equations of motion means specify- ing orbit of the particle.		
The orbit of the body lies in a plane.		
Specifying orbits specifies the state of the body com- pletely.		
The L^2, L_x, L_y, L_z and E are constants of motion.		
The state of the body at any time is completely specified by its position and momentum.		
Specifying by values of L^2, L_z, E specifies the states of the body completely.		
All states of the body must have a definite values of energy, L^2 and all the three components of angular momentum.		
The radial motion is governed by an effective potential.		
There will be states which have can a definite values of energy, L^2 , L_z only and do not have precise values of L_x, L_y .		
There exist states of the body which have nonzero uncer- tainty in energy, $\Delta E \neq 0$.		