UNIVERSITY OF HYDERABAD School of Physics

M.Sc.-I/IMSc.-III May 14-Jul 6 (2018) Quantum Mechanics

June 20, 2018 MM: 10

QUIZ-III

[1] Wave function of a particle in a potential for large distance is given by

$$\psi(x) \to \begin{cases} Ae^{ikx} + Be^{-ikx} & x \to -\infty \\ Ce^{iqx} + De^{-iqx} & x \to \infty \end{cases}$$
(1)

Taking the incident beam **coming from left /right** complete the following table.

	Beam from Left	Beam from Right
Incident Wave	Ae^{ikx}	De^{-iqx}
Reflected Wave	Be^{-ikx}	Ce^{iqx}
Transmitted Wave	Ce^{iqx}	Be^{-ikx}
Incident Intensity	$\frac{\hbar k}{m} A ^2$	$rac{\hbar q}{m} D ^2$
Reflected Intensity	$\frac{\hbar k}{m} B ^2$	$\frac{\hbar q}{m} C ^2$
Transmitted Intensity	$\frac{\hbar q}{m} C ^2$	$\frac{\hbar k}{m} B ^2$
Refl. Coeff.	$\left \frac{B}{A}\right ^2$	$\left \frac{C}{D}\right ^2$
Trans. Coeff.	$\frac{q}{k} \left \frac{C}{A} \right ^2$	$\frac{k}{q} \left \frac{B}{D} \right ^2$
BoundaryCondition	D=0	A=0

[2] If the potential is given by

$$V(x) = \begin{cases} V_1 & \text{for } x < -a, \\ 0 & \text{for } -a < y < a, \\ V_2 & \text{for } x > a. \end{cases}$$
(2)

Give expressions for q, p in eq, (1) in terms of energy E of the beam and V_1, V_2 .

Answer:

$$k = \sqrt{\frac{2m(E-V_1)}{\hbar^2}}; \qquad q = \sqrt{\frac{2m(E-V_2)}{\hbar^2}}$$