UNIVERSITY OF HYDERABAD SCHOOL OF PHYSICS

May 14-Jul 6 (2018) MM:

M.Sc.-I/IMSc.-IV Classical Mechanics June 30, 2018

1 Question

Suppose we connect two bodies of masses $m_1 = m_2 = m$ by a spring with constant *k* and natural length ℓ , and then allow them to slide across a horizontal frictionless table.

Two bodies connected by a spring

- (*a*) Setup the Lagrangian for the system in Cartesian coordinates \vec{r}_1 , \vec{r}_2 . [4]
- (*b*) Is this an example of central force force problem? [2]
- (*c*) Define the center of mass \vec{R} and relative coordinate \vec{r} [4]

$$
\vec{R} = \frac{\vec{r}_1 + \vec{r}_2}{2}, \qquad \vec{r} = \vec{r}_1 - \vec{r}_2
$$

and express the Lagrangian in terms of

- (i) new coordinates \vec{r} and \vec{R}
- (ii) polar coordinates r, ϕ defined by $x = r \cos \phi$, $y = r \sin \phi$ for relative motion.
- (*d*) Find cyclic coordinates and conserved quantities. [5]
- (*e*) Find the effective potential for the radial motion and plot it for (i)zero angular momentum, and (ii) non zero angular momentum. [2+3]

2 Solution

(*a*) The kinetic energy is given by

$$
T = \frac{m}{2} \left(\dot{\vec{r}}_1^2 + \dot{\vec{r}}_2^2\right)
$$

Let *k* denote the spring constant the spring. Then the potential energy is

$$
V = \frac{1}{2}k(|\vec{r}_1 - \vec{r}_2| - \ell)^2
$$

The Lagrangian is therefore given by

$$
L = T - V = \frac{m}{2}(\vec{r}_1^2 + \vec{r}_2^2) - \frac{1}{2}k(|\vec{r}_1 - \vec{r}_2| - \ell)^2
$$

- (*b*) Yes, because the interaction depends only on the distance between the two bodies.
- (*c*) The two coordinates \vec{r}_1 , \vec{r}_2 can be written in terms of relative and center of mass coordinates.

$$
\vec{r}_1 = \vec{R} + \frac{1}{2}\vec{r},
$$
 $\vec{r}_2 = \vec{R} - \frac{1}{2}\vec{r}$

Hence the kinetic energy is

$$
T = \frac{m}{2} \left(|\vec{R} + \frac{1}{2}\vec{r}|^2 + |\vec{R} - \frac{1}{2}\vec{r})|^2 \right)
$$
 (1)

$$
= m\dot{\vec{R}}^2 + \frac{m}{4}\dot{\vec{r}}^2 \tag{2}
$$

$$
= \frac{1}{2} \{ M \dot{\vec{R}}^2 + \mu \dot{\vec{r}}^2 \} \tag{3}
$$

Here $M = 2m$, $\mu = m/2$ are total mass and reduced mass respectively. The potential energy becomes

$$
V = \frac{k}{2}(r - \ell)^2
$$

In polar coordinates the Lagrangian Takes the form

$$
L = \frac{1}{2}M\dot{\vec{R}}^2 + \frac{1}{2}\mu\dot{r}^2 + \frac{1}{2}\mu r^2\dot{\theta}^2 - \frac{k}{2}(r-\ell)^2
$$

- (*d*) The cyclic coordinates are \vec{R} and θ . The conserved quantities are total momentum of the system, $M\dot{\vec{R}}$, and the angular momentum $p_{\theta} = \mu r^2 \dot{\theta}$.
- (*e*) The total energy is given by

$$
E = \frac{\mu}{2}\dot{r}^2 + \frac{\mu}{2}r^2\dot{\theta}^2 + \frac{1}{2}(r-\ell)^2
$$
 (4)

$$
= \frac{\mu}{2}\dot{r}^2 + \frac{p_\theta^2}{2\mu r^2} + \frac{k}{2}(r-\ell)^2 \tag{5}
$$

(6)

Hence the effective potential for radial motion is given by

$$
V_{\text{eff}} = \frac{k}{2}(r - \ell)^2 + \frac{p_{\theta}^2}{2\mu r^2} = \frac{k}{2}\left\{(r - \ell)^2 + \frac{\lambda}{r^2}\right\}
$$

where $\lambda = \frac{p_{\theta}^2}{k\mu}$. A few plots for $\ell = 1$ and for $\lambda = 0, 0.2$ and 2,

