VS-03 Problem Set Linear Functionals

A. K. Kapoor http://0space.org/users/kapoor akkapoor@iitbbs.ac.in; akkhcu@gmail.com

[1] Let ψ be a linear functional on vector space \mathbb{R}^3 . It is given that

$$\psi(x_1) = 3, \psi(x_2) = 4, \psi(x_3) = 5$$

where x_1, x_2, x_3 are the three vectors

$$x_1 = (1, 1, 0);$$
 $x_2 = (0, 1, 1);$ $x_3 = (1, 1, 1);$

Find $\psi(y)$ where y = (8, 9, 7)

- [2] A number of functionals are defined on vectors spaces as given below. In each case check if the functional is a linear functional.
 - (a) Functional Φ_1 on \mathbb{R}^3 is defined by $\Phi_1(\vec{A}) = \vec{A} \cdot \vec{A}$.
 - (b) Functional Φ_2 on \mathbb{R}^3 is defined by $\Phi_2(\vec{A}) = \vec{m} \cdot \vec{A} + \alpha$, where \vec{m} is a fixed vector and α is real number. Is there any value of α for which $\vec{\Phi_2}$ is a linear functional ?.
 - (c) Φ_3 on \mathbb{R}^n is defined by $\Phi_3 f = \sum_{k=1}^n |\xi_k|$, where $f = (\xi_1, \xi_2, ..., \xi_n)$.
 - (d) For p(t) in vector space of all polynomials, define Φ_4 by

$$\Phi_4(p) = \int_0^1 p(t^2) dt$$

(e) Let $f \in \mathbb{C}^3$ be written as (ξ_1, ξ_2, ξ_3) define functionals as below

$$(i)\Psi_1(f) = \xi_1 + \xi_2; (ii)\Psi_2(f) = \xi_1 - \xi_2 + 3; (iii)\Psi_3(f) = \xi_1 + \xi_2^3$$

- [3] Let \mathcal{V} be the real vector space of continuous functions f(x) with $x \in [0, 1]$. Let Ψ be linear functional on the vector space \mathcal{V} . Let \mathscr{M} be the set of all vectors $f \in \mathcal{V}$ such that $\Psi(f) = 5$. Is the set \mathscr{M} a subspace of \mathcal{V} ?
- [4] Let \mathcal{M}_1 and \mathcal{M}_2 be two subspaces of a vector space \mathcal{V} . Show that their intersection $\mathcal{M}_1 \$ \cap \mathcal{M}_2$ is also a subspace. Give two examples to show that the union is not a subspace.

vs-pset-03001.pdf Ver 17.10.x Created : October 7, 2017 Printed : October 8, 2017

No Warranty, Implied or Otherwise License: Creative Commons http://0space/node/1817 PROOFS