VS-01 Problem Set Groups, Fields, Vector Spaces and Subspaces

A. K. Kapoor http://0space.org/users/kapoor

akkapoor@iitbbs.ac.in; akkhcu@gmail.com

- [1] Consider the set of all vectors of (ξ_1, ξ_2, ξ_3) in \mathbb{C}^3 . In which of the following cases the set of vectors form a subsapce of \mathbb{C}^3 ?
 - (a) ξ_1 is real. (b) $\xi_1 = 0$ (c) $|\xi_1| > 0$ (d) either ξ_1 or ξ_2 is zero (e) $\xi_1 + \xi_2 = 0$ (f) $\xi_1 + \xi_2 = 1$

[2] Consider the set of all 3×3 real matrices A for which

(a) Tr A = 0 (b) det A = 0 (c) $A_{11} = 0$

(d)
$$A_{11} = A_{22} = A_{33} = 0$$
 (e) $A^T = A$ (f) $A^T = -A$

In which of these cases do the set of matrices A form a vector space?

- [3] Consider the set of all polynomials $x(t) = \alpha_0 + \alpha_1 t + \alpha_2 t^2$ for which
 - (a) x(0) = 0(b) 2x(0) = x(1)(c) x(t) = x(1-t)(d) x(1) > 0.

In which of these cases do the set of polynomials form a vector space ?

[4] Do the polynomials

$$x_1(t) = 1 - t, x_2(t) = t(1 - t), x_3(t) = 1 - t^2$$

give a basis in $\mathscr{P}_2(t)$?

[5] Consider the vector space $\mathscr{P}_5(t)$ where the element x(t) are polynomials of degree less than equal to 4:

$$x(t) = \alpha + \beta t + \gamma t^2 + \delta t^3 + \rho t^4$$

Let \mathscr{M} be the subspace of $\mathscr{P}_5(t)$ consisting of polynomials which are even functions of t. What is the dimension of \mathscr{M} ? What is the vector space \mathscr{N} such that

$$\mathscr{P}_5(t) = \mathscr{M} \oplus \mathscr{N}$$

Give a basis in $\mathcal N.$

[6] In the above example what is the dimension of the quotient subspace $\mathscr{P}_5(t)/\mathscr{M}$? Give a basis for the quotient space.

vs-pset-01001.pdf Ver 17.10.x Created : October 7, 2017 Printed : October 8, 2017

