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§1 Time Evolution in Quantum Systems-I

Description of state of a quantum mechanical system at one time is by
state vector in the Hilbert space.As the system evolves this state vector
will change. General requirements on time evolution lead to time evolution
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governed by unitary operator and for short times by a hermitian operator
H which will be identified with Hamiltonian of the system.

Let |ψt0〉 represent the state of system at time t0 and |ψt〉 represent the
state at time t. We assume that |ψt0〉 at time t0 determines the state at
time t completely. The principle of superposition should apply at these two
times t0 and t. If we have a relation at time t0

|ψt0〉 = α|χt0〉+ β|φt0〉 (1)

between three possible states,|ψ〉, |χ〉, |φ〉, the same relation must hold at all
times t > t0 when the system is left undisturbed

|ψ(t)〉 = α|χt〉+ β|φt〉 (2)

Thus if we write
|ψt〉 = U(t, t0)|ψt0〉 etc. (3)

Then U(t, t0) must be a linear operator independent of ψ. Obviously U must
reduce to the identity operator at time t = t0

U(t0, t0) = I . (4)

Next we demand that the norm of vector |ψt〉 should not change with time
and hence

〈ψt|ψt〉 = 〈ψt0|ψt0〉 for all t (5)

The above requirements (2) and (5), respectively, imply that the operator
U must be a linear operator and that it must be unitary.

UU † = U †U = I (6)

We shall now derive a differential equation satisfied by the state vector at
time t. We, therefore, compute

d

dt
|ψt〉 = lim

∆t→0

|ψt+∆t)〉 − |ψt〉

∆t

= lim
∆t→0

(U(t+∆t, t)− I)

∆t
|ψt〉 (7)

or
d

dt
|ψt〉 = X̂|ψt〉 (8)

where X̂(t) = lim
∆t→0

U(t+∆t, t)− I

∆t
(8”)

=
d

dt′
U(t, t′)|t′=t

The operator X̂ can be shown to be anti-hermitian and hence with notation
H(t) ≡ X/(i~),H(t) will be hermitian. We therefore write Eq.(88) as

i~
d

dt
|ψt〉 = Ĥ(t)|ψt〉 (9)
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where

Ĥ(t) =
1

i~

∂

∂t
U(t, t′)|t′=t (10)

We shall now check that H(t) must be a hermitian operator. Consider Link[1]

U †(t, t′)U(t, t′) = I (11)

Differentiating w.r.t. t we get

{

∂

∂t
U †(t, t′)

}

U(t, t′) + U †

{

∂

∂t
U(t, t′)

}

= 0 (12)

Setting t′ = t and using U(t, t) = I we have

d

dt
U †(t, t′)|t′=t +

d

dt
U(t, t′)|t′=t = 0 (13)

or (
1

i~
Ĥ)† +

1

i~
Ĥ) = 0 (14)

or − iĤ† + Ĥ = 0 (15)

or Ĥ† = Ĥ (16)

Thus the time evolution of a quantum system is governed by the equation

i~
∂

∂t
|ψt〉 = Ĥ(t)|ψt〉 (17)

Using correspondence with classical mechanics, Dirac shows that the
operator Ĥ the represents the energy (or the Hamiltonian) of the system.
( See §2 below and the discussion in the end of this section.) Using (3) in
(18) we get

i~
∂

∂t
U(t, t0)|ψt0〉 = Ĥ(t)U(t, t0)|ψt0〉 (18)

This equation must hold for all vectors |ψ >. Hence the time evolution
operator U must satisfy the differential equation

i~
∂

∂t
U(t, t0) = Ĥ(t)U(t, t0) . (19)

§2 Time Development of Averages

Time variation of average values

The time evolution of a quantum system is governed by the Schrodinger
equation

i~
d

dt
|ψt〉 = Ĥ|ψt〉. (20)
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We will obtain an equation for time development of averages of a dynamical
variable F̂ The result will turn out to have an obvious correspondence with
the classical equation of motion for dynamical variable F . This then will
suggest the identification of Ĥ as the operator representing the Hamiltonian
of the system.

Let F (q, p, t) be an dynamical variable of the system and let F̂ denote the
corresponding operator. We are interested in finding out how the average
value

〈F̂ 〉 ≡ 〈ψt|F̂ |ψt〉 (21)

changes with time. The time dependence of the average value comes from de-
pendence of the three objects, the operatorF̂ , the bra vector 〈ψt|, and the ket
vector |ψt〉, present in Eq.(21). The equation conjugate to the Schrodinger
equation

i~
d

dt
|ψt〉 = Ĥ|ψt〉 (22)

is given by

− i~
d

dt
〈ψt| = 〈ψt|Ĥ† (23)

Since the operator Ĥ is hermitian, the above equation takes the form

− i~
d

dt
〈ψt| = 〈ψt|Ĥ (24)

Therefore

d

dt
〈F̂ 〉 =

(

d

dt
〈ψt|

)

F̂ |ψt〉+ 〈ψt|
dF̂

dt
|ψt〉+ 〈ψt|F̂

(

d

dt
|ψt〉

)

(25)

Using Eq.(23) and Eq.(24) in Eq.(25) we get

d

dt
〈F̂ 〉 = −

1

i~
〈ψt|ĤF̂ |ψt〉+ 〈ψt|

dF̂

dt
|ψt〉+

1

i~
〈ψt|F̂ Ĥ|ψt〉 (26)

The above equation is rearranged to give the final form

d

dt
〈F̂ 〉 = 〈

∂

∂t
F̂ 〉+

1

i~
〈 [F̂ , Ĥ] 〉 (27)

This result is known as Ehrenfest theorem. Comparing the Eq.(27) with the
equation of motion in classical mechanics for time evolution of dynamical
variables

dF

dt
=
∂F

∂t
+ {F,H}PB (28)

and remembering that the commutator divided by i~ corresponds to the
Poisson bracket in the limit ~ → 0, we see that Ĥ must be identified as the
operator corresponding to the Hamiltonian H of the system.
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§3 Solution of Dependent Schrödinger Equation.

A scheme to solve the time dependent Schrödinger equation

i~
d

dt
|ψ〉 = Ĥ|ψ〉 (29)

is described. The solution will be presented in the form

|ψt〉 = U(t, t0)|ψt0〉 (30)

For our present discussion, it will be assumed that the Hamil-

tonian Ĥ does not depend on time explicitly. Let the state vector

of system at initial time t = 0 be denoted by |ψ0〉.
Since Ĥ is always assumed to be hermitian, its eigenvectors form an

orthonormal complete set and we can expand the state vector at time t,
|ψt〉, in terms of the eigenvectors. Denoting the normalized eigenvectors by
|En〉, we write

|ψt〉 =
∑

n

cn(t)|En〉. (31)

where the constants cn(t) are to be determined. Substituting (??) in (??)
we get

i~
d

dt

∑

n

cn(t)|En〉 = Ĥ|ψt〉 (32)

i
∑

n

~
dcn(t)

dt
|En〉 =

∑

n

cn(t)Ĥ|En〉 (33)

Taking scalar product with |Em〉 and using orthonormal property of the
eigenvectors |En〉, we get

i~
dcm(t)

dt
= Emcm(t). (34)

which is easily solved to give

cm(t) = cm(0)e−iEmt/~. (35)

Therefore, |ψt〉,the solution of time dependent equation becomes

|ψt〉 =
∑

m

cm(0)e−iEmt/~.|Em〉. (36)

The coefficients cm(0) are determined in terms of the state vector |ψ0〉 at
time t = 0 by setting time t = 0 in the above equation. This gives

|ψ0〉 =
∑

n

cn(0)|En〉. (37)
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The unknown coefficients cn(0) can now be computed; taking scalar product
of Eq.(87), with |Em〉 we get

cm(0) = 〈Em|ψ0〉. (38)

Thus Eq.(86) and (??) give the solution of the time dependent Schrödinger
equation as

|ψt〉 =
∑

n

cn(0) exp(−i~Ent)|En〉 . (39)

The right hand side of the above equation can be rewritten as

∑

n

cn(0) exp(−i~Ent)|En〉 =
∑

n

cn(0) exp(−i~Ht)|En〉 (40)

= exp(−i~Ht).
∑

n

cn(0)|En〉 (41)

Therefore Eq.(89) takes the form

|ψt〉 = exp(−iHt/~)|ψ0〉. (42)

In general, if the state vector is know at time t = t0, instead of time t = 0,
the result Eq.(90) takes the form

|ψt〉 = exp(−iH(t− t0)/~)
∑

n

cn(t0)|En〉 (43)

= exp(−iH(t− t0)/~)|ψt0〉. (44)

The time evolution operator U(t, t0), of Eq.(96), is therefore given by

U(t, t0) = exp(−iH(t− t0)/~) . (45)

§4 Stationary States and Constants of Motion

Stationary states

Let us consider time evolution of a system if it has a definite value of energy
at an initial time t0. The value of the energy then has to be one of the
eigenvalues and the state vector will be the corresponding eigenvector. So
|ψt0〉 = |Em〉, then at time t the system will be in the state given by

|ψt〉 = U(t, t0)|Em〉 = exp(−iEm(t− t0)/~)|Em〉. (46)

It must be noted that the state vector at different times is equal to the
initial state vector times a numerical phase factor (exp(−iEm(t − t0)/~)).
Therefore, the vector at time t represents the same state at all times. Such
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states are called stationary states because the state does not change with
time. Every eigenvector of energy is a possible stationary state of a system.
In such a state the average value of a dynamical variable, X̂ , not having
time explicitly, is independent of time even if X̂ does not commute with
Hamiltonian. In fact the probabilities of finding a value on a measurement
of the dynamical variable are independent of time.

Constant of motion

Unless mentioned otherwise, we shall always assume that the Hamiltonian
H of the system under discussion is independent of time.

If the dynamical variable F does not contain explicit time dependence,
then we have ∂F

∂t = 0. If such an operator F̂ commutes with the Hamiltonian

operator Ĥ, we will have

[F̂ , Ĥ ] = 0 . (47)

Eq.(??) shows that
d

dt
〈ψt|F̂ |ψt〉 = 0

Therefore in an arbitrary state, the average value of F̂ does not change with
time. Such a dynamical variable will be called a constant of motion.

§5 Summary

• Given the state of the system at a time t0, the state vector at any
other time is related to it by a unitary transformation U(t, t0).

|ψt〉 = U(t, t0) |ψt0〉

• The equation of motion of quantum system is the Schrodinger equation

i~
d

dt
|ψt〉 = Ĥ|ψt〉

where Ĥ is the Hamltonian operator of the system.

• The time evolution operator satisfies the equation

i~
∂

∂t
U(t, t0)|ψt0〉 = Ĥ(t)U(t, t0)

• If the Hamiltonian does not depend on time, the evolution operator is

U(t, t0) = exp[−iĤ(t− t0)/~]
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• The average value of a dynamical variable,F̂ , satisfies

d

dt
〈F̂ 〉 = 〈

∂F̂

∂t
〉+

1

i~
〈 [F̂ , Ĥ ] 〉

• A dynamical variable is a constant of motion if it commutes with the
Hamiltonian.

• The energy eigenstates of a system are staionary; they do not change
with time. The state vector of a stationary state at any time is equal
to the initial state vector multiplied by a numerical phase factor.

• The average value of a constant of motion G is independent of time in
every possible state of the system including nonstationary states.

• The avearge value of every dynamical variable is independent of time
in stationary states.

§6 Time Evolution of Quantum Systems-II

The state vector at a given time specifies the state of the system at a given
time and the state at any time is obtained by solving the Schrödinger equa-
tion.

i~
d|ψ〉

dt
= H|ψt〉. (48)

where H is the Hamiltonian operator. The reason for identification of H,
in the above equation, with Hamiltonian is best brought out in by means of
correspondence with equations in classical mechanics.

From now on we will assume that the Hamiltonian H does not depend
on time. In this case the state vector at time t is related to the state vector
at initial time t0 by

|ψt〉 = U(t, t0)|ψt0〉 (49)

where

U(t, t0) = exp
(

−
iH(t− t0)

~

)

(50)

Since H is a hermitian operator, it follows that U(t, t0) is aunitary operator.
The Hamiltonian operator being Hermitian leads to the following impor-

tant consequences. In the table below a few examples of time evolution of
states are given.

Table : Time evolution energy eigenstates of a
quantum system
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S.N. State at time t = 0 State at time t

1. |En〉 e−iEnt/~|En〉

2. c1|En〉+ c2|En〉 c1e
−iEnt/~|E1〉+ c2e

−iE2t/~|En〉

3.
∑

k ck|Ek〉
∑

k cke
−iEkt/~|Ek〉

4. If states |ψt0〉, |φt0〉 evolve into |ψt〉, |φt〉,
then c1|ψt0〉+ c2|φt0〉 evolves into c1|ψt〉+ c2|φt〉

• The first row in the table shows that the energy eigenstates

H|En〉 = En|En〉 (51)

i.e. the states corresponding to a definite value of energy, have a very
simple time evolution. The state vector changes by phase factor, a
multiplicative constant of absolute value 1. Thus the state itself does
not change with time. Therefore energy states are called stationary

states.

• The time evolution preserves the superposition of states as is brought
out by the examples in the second and last rows of the table.

• The time evolution is unitary and hence norm of the state vector is
preserved. Mathematically this means that the norm 〈ψt|ψt〉 is inde-
pendent of time. In other words

〈ψt|φt〉 = 〈ψt0|φt0〉 (52)

and
d‖ψ(t)‖

dt
= 0 (53)

Remembering that ‖ψ(t)‖2 is just the sum of probabilities of all pos-
sible outcomes, The above result has a physical interpretation total
probability of all possible outcomes of a measurement remains con-
stant (= 1) at all times.

Here the results given above are a consequence of Hamiltonian being
hermitian.

In an alternate approach [?], one can start from requirements that su-
perposition be preserved and the normalization of the state vector should
not change with time and prove that this leads to an equation of the form
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(??) where H some hermitian operator. Identification with operator cor-
responding to Hamiltonian can then be done by making use of classical
correspondence.

§7 Heisenberg Picture of Quantum Mechanics

§7.1 A Summary of Schrodinger Picture

In most commonly used description of quantum mechanics, the time devel-
opment is described by the time dependent Schrödinger equation.

i~
∂|ψt〉

∂t
= H|ψt〉 (54)

whereH is the Hamiltonian operator of the system. The dynamical variables
are operators and do not evolve with time. This description of time evolution
is known as the Schrodinger picture of quantum mechanics.

Note that average values and probabilities are observable quantities, but
not the wave function or the state vector. This fact allows to describe the
time development in several possible ways. We will describe two alternate
important ways of describing time development of a quantum system known
as the Heisenberg picture and the Dirac picture.

We use subscript S to denote the Schrodinger picture states |ψ〉S and
operators XS(q, p) or simply XS .

To simplify present discussion, we will assume that the Hamiltonian is
independent of time. The state vector at time t is given by

|ψt〉S = U(t, t0)|ψt0〉S (55)

where the time evolution operator is given by

U(t, t0) = exp(−iH(t− t0)/~). (56)

Without loss of generality, we will set t0 = 0. and write

|ψt〉S = e−iHt/~|ψ0〉 (57)

§7.2 Heisenberg Picture

The Heisenberg picture state vector is defined by

|ψt〉H = eiHt/~|ψt〉S = |ψ0〉. (58)

The Heisenberg state vector is independent of time and coincide with the
state vector in the Schrödinger picture at initial time. The time development
of the Heisenberg picture operators is defined so that the average value of
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any dynamical variable at time t in the Schródinger and Heisenberg pictures
coincide. Thus we demand

H〈ψt|XH(t)|ψt〉H = S〈ψt|XS |ψt〉S (59)

Substituting (84) and (85) gives

〈ψ0|XH(t)|ψ0〉 = 〈ψ0|e
iHt/~XS e

−iHt/~|ψ0〉. (60)

We, therefore, define the Heisenberg picture operators by

XH(t) = eiHt/~XS e
−iHt/~. (61)

Equation of Motion In Heisenberg picture the state vector does not
evolve with time. SO how do we describe the time development of a sys-
tem? The answers is that in the Heisenberg picture the operators carry the
entire time dependence. So for a point particle, the position operator, the
momentum operator, in fact all dynamical variables become time dependent.
This is parallel to the classical description the time evolution of the state
is described by the position and momentum. The equations of motion are
then the equations telling us how the a given dynamical variable will change
with time. The equation of motion is easily derived from Eq.(88) and we
compute

dXH

dt
=

d

dt

[

eiHt/~XS e
−iHt/~

]

(62)

=
d

dt

(

eiHt/~
)

XS e
−iHt/~ + eiHt/~

( d

dt
XS

)

e−iHt/~ + eiHt/~XS
d

dt

(

e−iHt/~
)

(63)

= iH
~
eiHt/~ XS e

−iHt/~ + eiHt/~
( ∂

∂t
XS

)

e−iHt/~ + eiHt/~XS e−iHt/~−iH
~

(64)

=
i

~
HXH +

∂

∂t
XH −XH

i

~
H (65)

Here we have used

d

dt
eiHt/~ =

(

iH
~

)

eiHt/~ = eiHt/~
(

iH
~

)

. (66)

Thus we arrive at the final form of equations of motion in the Heisenberg
picture

dXH

dt
=
∂XH

∂t
+

1

i~

[

XH ,H
]

−
. (67)

Recalling that the ( 1
i~× commutator) has correspondence with the Poisson

bracket, we have an obvious correspondence with the Poisson bracket form
of equations of motion in classical mechanics.

The steps (89)- Eq.(92), leading to the final result (93), require some
explanation and care as explained in Notes and Comments section at the
end.
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§8 Interaction Picture of Quantum Mechanics

We shall now discuss the interaction picture, also known as Dirac picture.
We shall denoting the Schrodinger picture kets and operators by |ψ〉S ,XS

etc. and |ψ〉I ,XI etc will denote the corresponding quantities in the inter-
action picture.

Let the Hamiltonian of the system be written as sum of two parts

H = H0 +H ′. (68)

H0,H
′ will be called free part and the interaction part of the Hamiltonian H,

respectively. While H0 is assumed to be independent of time, the interaction
Hamiltonian may or may not depend on time. The state of a system in the
interaction picture are defined by

|ψt〉I = eiH0t/~|ψt〉S . (69)

and the dynamical variables of the interaction picture are defined by de-
manding that the average values in the interaction and Schrödinger pictures
coincide at all times:

I〈ψ|XI |ψ〉I ≡S 〈ψ|XI |ψ〉S . (70)

Substituting
|ψt〉S = e−iH0t/~|ψt〉I , (71)

from (83) we get

I〈ψ|XI |ψ〉I = I〈ψ|e
iH0t/~XIe

−iH0t/~|ψ〉I . (72)

Therefore, we use
XI = eiH0t/~XSe

−iH0t/~ (73)

to define the an interaction picture dynamical variables.
The time dependence of the interaction picture operators is very simple

and is governed by the free Hamiltonian H0:

i~
dXI(t)

dt
=

[

XI ,H0

]

. (74)

As an example, it should be obvious that, the free particle Hamiltonian H0

in the interaction picture remains identical with H0:

(H0)I = eiH0t/~H0e
−iH0t/~ = H0. (75)

On the other hand, even though the interaction part of the Hamiltonian,
H ′, may be independent of time, the interaction picture Hamiltoinan H ′

I

H ′
I(t) = eiH0t/~H ′e−iH0t/~ (76)
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is different from H ′ and depends explicitly on time. The time dependence of
the state vector in the interaction picture is governed by this operator H ′

I ,
the interaction part of Hamiltonian,H ′, transformed to the interaction pic-
ture. We will now derive the differential equation which gives the evolution
of the state vectors. For this purpose we begin with (83)

i~
d

dt
|ψt〉I = i~

d

dt

(

eiH0t/~|ψt〉S

)

= i~
( d

dt
eiH0t/~

)

|ψt〉S + eiH0t/~
(

i~
d

dt
|ψt〉S

)

+ (77)

= −H0e
iH0t/~|ψ0〉S + eiH0t/~

(

H0 +H ′
)

|ψt〉S

= eiH0t/~(−H0)|ψ0〉S + eiH0t/~
(

H0 +H ′
)

|ψt〉S

= eiH0t/~
(

H ′
)

|ψt〉S (78)

Next, we need to express the Schrödinger picture state vector,|psit〉S , in the
right hand side in terms of the interaction picture state vector |ψt〉I . Thus
we get

i~
d

dt
|ψt〉I = eiH0t/~

(

H ′
)

e−iH0t/~|ψt〉I . (79)

Thus we get the desired equation for time evolution of the state vectors in
the interaction picture in the final form

i~
d

dt
|ψt〉I = H ′

I |ψt〉I (80)

where H ′
I is given by Eq.(90). The state vector evolves with the interaction

part of the Hamiltonian.

§9 Perturbation Expansion in Interaction Picture

§9.1 Integral equation for time evolution operator

Let H = H0 + H ′ be the Hamiltonian of system of interest, H0 and H ′,
respectively, being the free part and interacting part of the total Hamiltonian
. In the interaction picture the time dependence of an operator is given by

i~
dXI(t)

dt
= [XI(t),H0]. (81)

The solution of this equation can be written down explicitly and we have

XI(t) = eiH0t/~XI(0)e
−iH0t/~. (82)
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The time development of the state vector in the interaction picture is given
by the Schrodinger equation

i~|ψt〉I = H ′
I(t)|ψt〉. (83)

It must be noted that the interaction Hamiltonian in the interaction picture,
H ′

I(t), is always time dependent whether the Schrodinger picture operator
depends on time or not. This makes it impossible to write an explicit solution
to (83) impossible. Here we will be interested in deriving a perturbative
expansion in powers of H ′

I(t).
Let U(t, t0) be unitary operator which connects the interaction picture

states at times t, t0):
|ψt〉I . = U(t, t0)|ψt0〉I . (84)

Obviously we must have
U(t0, t0) = Î . (85)

Substituting (84) in both sides of Eq.(83), we get the following equation for
the time evolution operator U(t, t0).

i~
d

dt
U(t, t0)|ψt0〉I = H ′

I(t)U(t, t0)|ψt0〉I . (86)

Since the initial state |ψ, t0〉 is arbitrary, we get

i~
d

dt
U(t, t0) = H ′

I(t)U(t, t0). (87)

Integrating this equation w.r.t. time and using the initial condition (85) we
get

U(t, t0) = Î +
1

i~

∫ t

t0

H ′(t)U(t, t0) dt. (88)

This integral equation is starting point for a perturbative expansion of the
time evolution operator U(t, t0).

§9.2 Perturbative solution

In order to simplify the notation, we will drop the suffix I from

H ′
I(t) and use the notation H ′(t) to denote the interaction picture

operator.

For book keeping purpose we rewrite equation (88) as

U(t, t0) = Î +
λ

i~

∫ t

t0

H ′(t)U(t, t0) dt (89)

and the parameter λ will be set equal to unity in the end. As zeroth order
approximation we may write

U (0)(t, t0) = Î (90)
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and obtain the next approximation by inserting the above expression in the
right hand side of (89). This gives

U (1)(t, t0) = Î +
λ

i~

∫ t

t0

H ′(t1) dt1. (91)

Repeating this process, by inserting U (1)(t, t0) for U(t, t0) in the right hand
side of Eq.(89), we get the second order approximation as

U (2)(t, t0) = Î +
λ

i~

∫ t1

t0

H ′(t)dt1 +
( λ

i~

)2
∫ t

t0

∫ t1

t0

H ′(t1)H
′(t2) dt2dt1. (92)

Iterating the above process gives an infinite series in powers of λ, The double
integral in the right hand side can be written as

∫ t

t0

∫ t1

t0

H ′(t1)H
′(t2) dt2dt1 =

1

2

∫ t

t0

∫ t

t0

T
(

H ′(t1)H
′(t2)

)

dt2dt1. (93)

Here the symbol T stands for time ordering, defined by,

T
(

H ′(t1)H
′(t2)

)

=

{

H(t1)H(t2), if t1 > t2,

H(t2)H(t1), if t2 > t1.
(94)

Proof of Eq.(93) is left as an exercise in double integration.

Later terms of the series can be found and turn out to be multiple integral
of time ordered product of more factors of H ′(t):

U(t, t0) = I +

∞
∑

n=1

( 1

i~

)n
∫ t

t0

dt1 . . .

∫ t

t0

dtnT
{

H(t1)H(t2) . . . H(tn)
}

. (95)

Retaining first few terms in the above series gives useful approximation for
several applications. The series (95) is symbolically written as

U(t, t0) = T exp

(

−i

~

∫ t

t0

H(t)dt

)

. (96)

and the right hand side is known as time ordered exponential of the argument.
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