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Abstract

The conditions for existence of series solution and analytic properties of the series
solution (Fuch’s Theorem) are described.

FROBENIUS METHOD

The Frobenius method of series solution is a useful method for a large class of linear
ordinary differential equations of mathematical physics. A general ordinary second order
linear differential equation can be put in the form

d2y(x)

dx2
+ p(x)

dy(x)

dx
+ q(x)y(x) = 0 (1)

In the Frobenius method of series solution, it is assumed that the solution can be written
in the form

y(x, c) =
∞
∑

n=0

anx
n+c = xc

[

a0 + a1x+ a2x
2 + · · · + anx

n + · · ·
]

(2)

The parameter c is called index. The expansion parameters an and the index c are
determined by substituting Eq.(2) in the ODE Eq.(1) , expanding p(x) and q(x) in powers
of x, and comparing the coefficients of different powers of x on both sides. The coefficient
of the general power n equated to zero gives recurrence relations for the coefficients of
expansion an. These recurrence relations are then solved and the expansion coefficients
are fixed.
When this method is applicable, one gets two linearly independent solutions y1(x) and
y2(x) for the second order differential equations. The most general solution y(x) of the
ODE Eq.(1) is then represented as a linearly combination of the solutions y1(x) and
y2(x).

y1(x) = αy1(x) + βy2(x) (3)

where the constants α and β are to be fixed by initial conditions. It must be remarked
that the two linear independent solutions are not always of the form Eq.(2) assumed in
the beginning . In general one may also get a series of type Eq.(2) multiplied by log x.
The expansion Eq.(2) is expansion about the point x = 0. In general one may attempt
a series solution about any point x0. In such a case, instead of Eq.(2) , one assumes the
solution to be of the form

y(x, c) =
∞
∑

n=0

an(x− x0)
c + n (4)

We now summarize the method of obtaining two linearly independent solutions in the four
cases of series solution.
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CASE I:

In this case the roots of the indicial equation are distinct and the difference of the roots
c1 and c2 is not an integer. The two linearly independent solutions are given by

y1(x) = y(x, c)|
c=c1

andy2(x) = y(x, c)|
c=c2

CASE II:

In this case the roots of the indicial equation are equal to, say, c0. The two linearly
independent solutions are given by

y1(x) = y(x, c)|
c=c0

andy2(x) =
d

dc
y(x, c)

∣

∣

∣

∣

c=c0

CASE III:

In this case the roots of the indicial equation, c1 and c2 is an integer.And one of the
coefficients becomes infinite for one of the values of c, which we assume to be c1. In this
case we assume controla0 = k(c − c1), k 6= 0. The two linearly independent solutions
are then given by

y1(x) = y(x, c)|
c=c1

andy2(x) =
d

dc
y(x, c)

∣

∣

∣

∣

c=c1

The solution obtained from y(x, c) by setting c = c2 is identical with y1(x) apart from an
over all constant.

CASE IV:

In this case the roots of the indicial equation, c1 and c2 are distinct and the difference of
the roots c1 and c2 is an integer. And one of the coefficients, say an, becomes indeterminate
for one of the values of c, which we assume to be c1. In this case we keep a0 and an as
unknown constants, and the most general solution containing two unknown constants is
obtained from y(x, c) setting c = c1.

y(x) = y(x, c)|
c=c1

The solution obtained from y(x, c) by setting c = c2 coincides with y(x) for particular
values of the constants a0 and an.

§0.1 Convergence of Series Solutions

We are now interested in knowing the properties of the solutions.
Having obtained the solutions in a series form one must ask what are the values of x for
which the series appearing in the solutions converge? When do we have two linearly inde-
pendent solutions ?
The answer to these and related questions is given by Fuch’s Theorem.For this purpose it
turns out to be useful to regard the independent variable x as complex variable and to
continue the two functions p(x) and q(x) to the complex plane.
As a preparation to the statement of the Fuch’s Theorem we define an ordinary point, the
regular singular and the irregular singular points of an ordinary differential equation. As
already mentioned the independent variable x will regarded as a complex variable.
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A point x = x0 in the complex plane is called an ordinary point of the differential
equation if both the functions p(x) and q(x) are analytic at x = x0.

A point x0 is called singular point of the ordinary differential equation, if it is not
an ordinary point.

A singular point x0 is called regular singular point of the differential equation if
the two functions P (x) and Q(x), where

P (x) = (x− x0)p(x), Q(x) = (x− x0)
2q(x) (5)

are analytic at x0.
A singular point x0 is called irregular singular point if it is not a regular singular point.

Point at Infinity

We say that the point at infinity (x = ∞) is, respectively, an ordinary point, a regular
singular point of a differential equation Eq.(1) if for the corresponding equation Eq.(5)
,in t = 1/x, the point t = 0 is an ordinary point or a regular singular point. Asimilar
statement holds for the irregular singular points.

Theorem 1 If x0 is an ordinary point of the differential equation Eq.(1) , there exist
two linearly independent solutions which are analytic at x0. These solutions are therefore
expressible as power series in (x− x0) in the form Eq.(4) . The radius of convergence of
the power series is at least as large as the distance of x0 from the nearest singular point
of the functions p(x) and q(x) in the complex plane.

The Fuch’s theorem given below summarises the corresponding results for the series
solution about a regular singular point.

Theorem 2 (Fuch’s Theorem) If the differential equation Eq.(1) has a regular singu-
lar singular point at x = x0 there exist two linearly independent solutions which can be
expressed in the form

y(x) = (x− x0)
c[log(x− x0)φ1(x) + φ2(x)] (6)

where φ1(x) and φ2(x) have power series expansions of the form

∞
∑

n=0

an(x− x0)
n (7)

The series expansions for φ1(x) and φ2(x) have radius of convergence at least as large
as the distance of x0 from the nearest point, in the complex plane, of P (x) and Q(x) as
defined in Eq.(5) .
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