
Case IV: Roots of indicial equation differ by an integer

Some Coefficients Remain Undetermined

September 22, 2015

Abstract

The method of series solution explained for a differential equation which has distinct roots
of indicial equation, differing by an integer, and some coefficient becomes indeterminate.

In this lecture we shall take up solution of an ordinary differential equation by the method of
series solution. The example to be discussed is such that the difference of the roots of the indicial
equation is an integer and some coefficient becomes indeterminate.

Consider the differential equation
d2y

dx2
+ x

2
y = 0 (1)

Substituting

y =

∞
∑

n=0

anx
n+c (2)

in Eq.(1) we get
∞
∑

n=0

an(n+ c)(n+ c− 1)xn+c−2 + x
2

∞
∑

n=0

anx
n+c = 0 (3)

or,
∞
∑

n=0

an(n+ c)(n + c− 1)xn+c−2 +

∞
∑

n=0

anx
n+c+2 = 0 (4)

The lowest power of x in the right hand side of Eq.(4) is xc−2. This gives

a0c(c− 1) = 0 (5)

Therefore the two values of c are c = 0 and c = 1. Equating the coefficients of xc−1
, x

c
, x

c+1
, x

c+2
, . . .

to zero successively gives
a1c(c+ 1) = 0, (6)

a2(c+ 1)(c + 2) = 0, (7)

a3(c+ 2)(c + 3) = 0, (8)

a4(c+ 4)(c + 3) + a0 = 0. (9)

The recurrence relation obtained by considering the coefficient of xm+c+2 is

am+4(c+m+ 4)(c +m+ 3) + am = 0. (10)

The solution for c = 1 can be constructed easily using the recurrence relations.
Let us now look at the case c = 0. In this case, from Eq.(6) we get

a1.0 = 0. (11)

Thus a1 cannot be fixed and is indeterminate. In this case we proceed as before except that we
retain both a0 and a1 as unknown parameters. We construct solution for this case, c = 0, first
and then come back and look at the solution for c = 1.
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Case c = 0 :

Substituting c = 0 from Eq.(6) to Eq.(10) we get

a2 = a3 = 0; a4 = −

a0

4.3
(12)

am+4 = −

am

(m+ 4)(m+ 3)
(13)

Combining Eq.(12) and Eq.(13) we see that

a2 = a6 = a10 · · · 0 (14)

and
a3 = a7 = a11 · · · 0 (15)

Also

a4 = −

1

4.3
a0; a8 = −

1

8.7
a4; a12 = −

1

12.11
a8 (16)

a5 = −

1

5.4
a1; a9 = −

1

9.8
a5; a13 = −

1

13.12
a9 (17)

Solving Eq.(16) and Eq.(17) we get

a4 = −

1

4.3
a0; a8 = −

1

8.7.4.3
a0; a12 = −

1

12.11.8.7.4.3
a0 (18)

a5 = −

1

5.4
a1; a9 = −

1

9.8.5.4
a1; a13 = −

1

13.12.9.8.5.4
a1 (19)

The series solution in this case contains two parameters, which are not determined by the
recurrence relations, and is given by

y(x) = a0y1(x) + a1y2(x) (20)

y1(x) = 1−
x
4

3.4
+

x
8

3.4.7.8
−

x
12

3.4.7.8.11.12
+ · · · (21)

y2(x) = x

{

1−
x
4

4.5
+

x
8

4.5.8.9
−

x
12

4.5.8.9.12.13
+ · · ·

}

(22)

These two functions y1(x) and y2(x) represent two linearly independent solutions. What happens
when one tries to construct the solution for the second value of c ? In this case we recover one
of the above two solutions already obtained. This will now be demonstrated explicitly.

Case c = 1 :

In this case we get
a1 = a2 = a3 = 0 (23)

am+4 = −

am

(m+ 5)(m+ 4)
(24)

We therefore get

a4 = −

1

5.4
a0; a8 = −

1

9.8
a4; a12 = −

1

13.12
a8 (25)

Compare the equations Eq.(25) with Eq.(17) . We now construct the series

y = x
c

∑

anx
n (26)

and get

y2(x) = a0x

{

1−
x
4

4.5
+

x
8

4.5.8.9
−

x
12

4.5.8.9.12.13
+ · · ·

}

(27)

This solution coincides with y2(x) of Eq.(22) except for an overall constant. Hence the most
general solution of the differential equation Eq.(1) is given by Eq.(20) .
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