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Abstract

An example of solution of a second order differential equation by the method of
series solution is presented. This case corresponds to the case when the two solutions
of the indicial equation do not differ by an integer. In this case the second solution is
obtained in a straight forward manner. does not require any extra steps to construct
the second solution.

An nth order ordinary differential equation has the form

a0(x)
dny(x)

dxn
+ a1(x)

dn−1y(x)

dxn−1
+ a2(x)

dn−2y(x)

dxn−2
+ . . .+ an(x)y(x) = P (x) (1)

where the coefficients a0(x), a1(x), a2(x), . . . , an(x) are in general functions of x. However
there are two special cases of interest.

CASE I : a0, a1, a2, . . . , an are constants independent of x and a0 6= 0 In this case we
say that the differential equation is the nth order linear equation with constant
coefficients.

CASE II : aj(x) are proportional to xn−j.In this case the equation is known as the Euler
equation.

In both these cases the complete solution of the differential equation can be written down
.

Case I :Constant Coefficients

Ordinary differential equation of nth order with constant coefficients have the form [a0 = 1]

dny(x)

dxn
+ a1

dn−1y(x)

dxn−1
+ a2

dn−2y(x)

dxn−2
+ . . . + any(x) = 0 (2)

Where a1, a2, . . . , an are constants. Denoting the differential operator in the left hand side
as L where

L =
dn

dxn
+ a1

dn−1

dxn−1
+ a2

dn−2

dxn−2
. . .+ an (3)

This equation can be solved by taking a trial solution of the form

y(x, λ) = exp[λx] (4)

computing
Ly(x, λ) = [λn + a1λ

n−1 + a2λ
n−2 + . . .+ an ]y(x, λ) (5)
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We see that Ly = 0 if λ is a root of the equation

λn + a1λ
n−1 + a2λ

n−2 + . . . + an = 0 (6)

the r.h.s of Eq.(5) will become zero and corresponding y(x, λ) will be a solution.
Hence we know that if the Eq.(6)has n distinct roots λ1, λ2, . . . , λn then the ODE Eq.(2)
has n solutions.

y1(x) = eλ1x; y2(x) = eλ2x; . . . yn(x) = eλnx; (7)

WHAT IF SOME ROOTS OF THE EQUATION Eq.() HAVE MULTIPLIC-
ITIES GREATER THAN 1 ?
Let us consider a simple concrete example of a second order differential equation

d2y(x, λ)

dx2
− 2α

dy(x, λ)

dx
+ α2y(x) = 0 (8)

y(x, λ) is a solution if
λ2 − 2αλ+ α2 = 0

This equation has a double root λ = α. This gives one solution y(x) = eαx.
There is a second solution which can be found by several methods.

METHOD 1:

Substituting y(x, λ) = eλx for y(x) in Eq.(8) we get,[compare with Eq.(5) ]

d2y(x, λ)

dx2
− 2α

dy(x, λ)

dx
+ α2y(x, λ) = (λ− α)2y(x, λ) (9)

Note that not only the right hand side vanishes for λ = α, also the first derivative of right
hand side vanishes w.r.t λ for λ = α. Thus

[

d2

dx2
− 2α

d

dx
+ α2

]

y(x, λ)

∣

∣

∣

∣

λ=α

= 0 (10)

Since the order of derivatives w.r.t λ and w.r.t x can be interchanged, the Eq.(10) is
equivalent to

[

d2

dx2
− 2α

d

dx
+ α2

]

d

dλ
y(x, λ)

∣

∣

∣

∣

λ=α

= 0 (11)

Thus d
dλ
y(x, λ) is a solution of the given differential equation for λ = α.

This gives the second solution as y2(x) = xeαx

METHOD 2:

Suppose we start from a differential equation

d2y(x, λ)

dx2
− (α+ β)

dy(x, λ)

dx
+ αβy(x, λ) = 0 (12)

Which has two distinct solutions

y1(x) = eαx; y2(x) = eβx (13)

We then ask what happens when β tends to α ? Obviously the second solution y2(x) tends
to the first solution y1(x) and the two solutions 13 are no longer independent. However,
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we can make use of the fact that 12 is a linear differential equation and any superposition
of two solutions is also a solution. Thus we may write

y3(x) = Ay1(x) +By2(x) (14)

and select A and B in such a way that even in the limit β −→ α, y3(x) remains independent
of y1(x) and y2(x) . One possible choice of A and B having this property is A = 1/(α−β)
and B = 1/(α − β) .With this choice 14 becomes

y3(x) =
y1(x)− y2(x)

α− β
=

eαx − eβx

α− β
(15)

and in the limit α −→ β Eq.(14) tends to the desired solution xe(αx)!

METHOD 3:

There is yet one more method, called the method of variation of constants which gives
a second solution directly in terms of the first solution .We shall show how this method
works for more general ordinary differential equations. After obtaining the final result we
shall apply it to the case of the example Eq.(8) for which one solution y1(x) = eαx is
already known.
In this method one writes the second solution as

y(x) = u(x)y1(x) (16)

and demand that the differential equation satisfied by u(x) be of one order lower. In this
example equation for u will of order 1.
Let y1(x) be a solution of the equation

[

d2

dx2
+ a(x)

d

dx
+ b(x)

]

y(x) = 0 (17)

substituting Eq.(16) in Eq.(17) we get

d2[u(x)y1(x)]

dx2
+ a(x)

d[u(x)y1(x)]

dx
+ b(x)u(x)y1(x) = 0 (18)

Using the fact that y1(x) satisfies the original equation Eq.(17) we get an equation
for u(x) as

y1(x)
d2u(x)

dx2
+ a(x)y1(x)

du(x)

dx
+ 2

dy1(x)

dx

du(x)

dx
= 0 (19)

writing v(x) = du(x)
dx

the Eq.(19) takes the form

y1(x)
dv(x)

dx
+ a(x)y1(x)v(x) + 2

dy1(x)

dx
v(x) = 0 (20)

This equation is of first order and can be solved for v(x), this solution in turn gives u(x).
To solve Eq.(20) we multiply it by y1(x) and rearrange in the form

d

dx

[

y21(x)v(x)
]

= −a(x)y21(x)v(x) (21)

To solve the above equation define w(x) ≡ y21(x)v(x) and solve for w(x) .We thus get

1

w(x)

dw(x)

dx
= −a(x) (22)
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Hence
w(x) = ce[−

∫
x

a(t)dt] (23)

Substituting w(x) = y21(x)v(x) = y21(x)
du(x)
dx

, and solving for u(x)we get

u(x) = c

∫

1

y21(x)
e[−

∫
x

a(t)dt]dx (24)

y2(x) = y1(x)u(x) = cy1(x)

∫

1

y21(x)
e[−

∫
x

a(t)dt]dx (25)

Eq.(8) is a special case of Eq.(17) with a(x) − −2α, b(x) = α2 and the one known
solution is y1(x) = e−αx. Making these substitutions in Eq.(25) the second solution is
easily computed to be

y2(x) = cxy1(x) (26)

This coincides with the standard known solution. In general, y2(x) so obtained will be a
linear combination of solutions obtained by other methods. All the three methods can be
generalized to include cases of higher multiplicities and higher order differential equations.
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