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1 A simple example

Setting up integral equation

Very often the problem of solving a linear differential equation can be

replaced with solution of an integral equation. An important feature

of the integral equation approach is that the initial conditions to be

satisfied by the solution is built into the integral equation. The integral

equation can be solved many a times by an iterative procedure which

we shall illustrate by an example of a simple differential equation.

∗
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Suppose we are interested in solving the differential equation

dy

dx
= λy (1)

subject to the boundary condition

y(x)|x=x0 = N (2)

where N is a constant. To convert Eq.(1) into an integral equation we

integrate Eq.(1) to get

y(x) = λ

∫

y(x)dx+ constant (3)

or to be more precise, let us write Eq.(3) as

y(x) = λ

∫ x

0

y(t)dt+ constant (4)

The constant in the above equation is fixed by making use of the initial

condition Eq.(2), and we get const= N and

y(x) = N + λ

∫ x

0

y(t)dt (5)
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Perturbative Solution of Differential Equation 1 A simple example

It is to noted that the unknown function y appears inside the integral

sign, hence an equation of this type is called integral equation. This

equation can be solved iteratively giving a solution as a series in powers

of λ. This method gives the exact answer in the case of this simple

example under consideration.

Perturbative Solution

As a first step, we set y equal to y0 where

y0 = N (6)

is the solution in the zeroth order in λ and is simply taken to be equal to

the first term Eq.(5). Next the zeroth order ’solution’ ,y0, is substituted

in the right hand side of Eq.(5) to get the solution in the first order in

λ. Thus we have

y1(x) = N + λ

∫ x

0

y0dx (7)

= N + λ

∫ x

0

Ndx (8)

∴ y1(x) = N(1 + λ)x (9)

To improve the approximation, we substitute y1(x) for y(x) in right hand

side of Eq.(2) to get the next approximation y2(x) for our solution.

y2(x) = N + λ

∫ x

0

y1(x)dx (10)

= N + λ

∫ x

0

N(1 + λx)dx (11)

= N

(

1 + λx+ λ2
x2

2

)

(12)

continuing in this fashion we get

y3(x) = N + λ

∫ x

0

y2(x)dx (13)

= N +Nλ

∫ x

0

(

1 + λx+ λ
x2

2

)

dx (14)

= N

(

1 + λx+
λ2x2

2
+
λ3x3

3!

)

(15)

y4(x) = N

(

1 + λx+
λ2x2

2
+
λ3x3

3!
+
λ4x4

4!

)

(16)

Thus we get an infinite series in powers of λ

y(x) = N

(

1 + λx+
λ2x2

2
+
λ3x3

3!
+ . . .

)

(17)

summing the series we get

y(x) = Neλx (18)

Note that this is the correct solution for ordinary differential equation

and satisfies the given boundary condition y(0) = N .

Alternate approach – Using series expansion

The above method of solution is equivalent to the following alternate

sequence of steps. We want to solve

y(x) = N + λ

∫ x

0

y(t)dt (19)

we assume that the solution can be written as a series in λ

y(x) = α0 + λα+ λ2α2 + · · ·+ αnλn + · · · (20)
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Integral Equation for Scattering 3 Integral Equation for Scattering

we substitute Eq.(20) in Eq.(19) and compare powers on both the sides.

Therefore we get

α0(x) + λα1(x) + λ2α2(x) + . . . λnαn(x) + . . . (21)

= N + λ

∫ x

0

{

α0(t) + λα1(t) + λ2(t)α2(t) + · · ·
}

dt (22)

on comparing coefficients of different powers of λ we successively get

α0(x) = N

α1(x) =

∫ x

0

α0(t)dt = Nx

α2(x) =

∫ x

0

α1(t)dt = N
x2

2

α1(x) =

∫ x

0

α2(t)dt = N
x3

3!

αk(x) =

∫ x

0

αk−1(t)dt = N
xk

k!
(23)

Therefore we get

y(x) = N

(

1 + λx+
λ2

2!
x2 + · · ·+

λn

n!
xn + · · ·

)

(24)

2 Green function for Poisson equation

In electromagnetic theory the electric potential satisfies the Poisson

equation

∇2Φ = −
ρ

ε0
, (25)

where ρ(~r) is the volume charge density. The Green function for the

Poisson equation is defined by

∇2G(~r) = −δ3(~r) (26)

If φ0(~r) is a solution of the Laplace equation

∇2φ0(~r) = 0, (27)

then

Φ(~r) = φ0(~r) +

∫

G(~r − ~r′)
ρ(~r′)

ε0
d3r′ (28)

is a solution of the Poisson equation which can be easily verified by

applying ∇2 on both sides of Eq.(28).

∇2Φ(~r) = ∇2φ0(~r) +∇2

∫

G(~r − ~r′)
ρ(~r′)

ε0
d3r′ (29)

=

∫

∇2G(~r − ~r′)
ρ(~r′)

ε0
d3r′ (30)

= −
1

ε0

∫

δ3(~r − ~r′)ρ(~r′)d3~r′ (31)

= −
ρ(~r)

ε0
(32)

It can be shown that one solution of Eq.(26) is

G(~r) =
1

4πr
. (33)

This Green function gives the potential due to a charge distribution

subject to the condition that the potential vanishes at infinity. The

exact form of the Green function and the solution φ0 of the Laplace

equation is determined by the boundary conditions of the problem.

3 Integral Equation for Scattering

In order to convert the Schrodinger equation
{

−~
2

2µ
∇2 + v(r)

}

ψ = Eψ (34)
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Integral Equation for Scattering 3 Integral Equation for Scattering

into an integral equation we first rewrite it as

(

∇2 + k2
)

ψ = u(~r)ψ(~r) (35)

where k2 =
2µE

~2
, U(r) =

2µ

~2
V (r) and we have defined Green function

G(~r) as a solution of

(

∇2 + k2
)

G(~r) = −δ(~r) (36)

and it was found that several solutions of Eq.(36) exist.Thus G(−→r ) can

G±(~r) =
1

4πr
exp±kr (37)

G0(~r) =
1

4πr
cos(kr) (38)

using the Green function we shall now write down a ”formal” solution

of Eq.(35) as a solution of integral equation. Next we shall determine

the behaviour of the solution as r → ∞ and show that the choice

G(~r) =
1

4πr
exp ikr (39)

leads to the correct boundary condition on the wave function. Using

a Green function which is a solution of Eq.(36) a formal solution for

Eq.(35) can be written as

ψ(~r) = φ(~r)−

∫

G(|~r − ~r ′|)U(|~r ′|)ψ(~r ′)d3r′ (40)

where φ(~r) is a solution of the equation

(

∇2 + k2
)

φ(~r) = 0 (41)

For the scattering problem we must select

φ(~r) = exp(i~ki.~r) (42)

where ~ki is the momentum of the incident particles.Substituting Eq.(39)

Eq.(42) in Eq.(40) we get the integral equation for the scattering to be

ψ(~r) = exp(i~ki.~r)−
1

4π

∫

expik|~r−
~r′|

|~r − ~r′|
U(~r′)ψ(~r′)d3r′ (43)

To verify that ψ(~r) given by Eq.(43) does indeed have correct asymptotic

property we expand |~r − ~r′| in powers of
~r

~r′
we shall assume that the

potential is short range potential so that the contribution to integral

over ~r′ comes from small value of r′. Expand |~r − ~r′| in powers of r′

|~r − ~r′| =
√

r2 + r′2 − 2~r · ~r′ (44)

= r

(

1− 2
~r · ~r′

r2
+
r′2

r2

)1/2

(45)

Using binomial expansion we get

|~r − ~r′| = r

(

1−
~r · ~r′

r2
+O

(

r′2

r2

)2
)

(46)

We substitute Eq.(46) in the exponential and in the factor
1

|~r − ~r′|
in

Eq.(43) and write
1

|~r − ~r′|
≈

1

r
to get

ψ(~r) −→ exp(i~ki · ~r)−
1

4πr

∫

exp

(

ikr − ik
~r · ~r′

r2

)

U(~r′)ψ(~r′)d3r′(47)

= exp(i~ki · ~r)−
eikr

4πr

∫

exp(−ikn̂ · ~r′)U(r′)ψ(r′)d3r′ (48)

In the last step we have introduced a unit vector n̂ = ~r/r. The Eq.(48)

gives the probability amplitude ( wave function ) at ~r. If the particles
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Scattering in Quantum Mechanics 3 Integral Equation for Scattering

are to reach at a detector at ~r, the vector n̂ must be in the direction of

the final momentum and parallel to kf . Note that

|~ki| = |~kf | = k (49)

holds as a consequence of energy conservation and hence

k(n̂ · ~r′) = ~kf · ~r (50)

Thus Eq.(48) takes the form

ψ(~r) ≈ exp(i~ki · ~r)−
eikr

4πr

∫

exp(−i~k · ~r′)U(r′)ψ(r′)d3r′ (51)

This asymptotic behaviour is of the for expected for large r

ψ(~r) ≈ exp(i~ki · ~r)−
eikr

r
f(θ, φ). (52)

Comparing Eq.(51) with Eq.(52) we see that the scattering amplitude

is given by

f(θ, φ) = −
1

4π

∫

exp(−i~kf · ~r′)U(r′)ψ(r′)d3r′ (53)

= −
( µ

2π~2

)

∫

exp(−i~kf · ~r′)V (r′)ψ(r′)d3r′ (54)

It must be noted that the integral equation Eq.(43) and the expression

for the scattering amplitude in Eq.(54) are exact results. We shall

next discuss how to use (43) and (54) to obtain scattering amplitude in

the Born approximation.
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