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1 Asymptotic behaviour of scattering wave function

In this unit description of scattering and scheme of computation of cross

section in quantum mechanics is introduced. This is achieved by im-

posing a suitable boundary condition on the solution of the time in-

dependent Schrödinger equation and converting Schrödinger equation

into an integral equation using the Green function for the free particle

Schrödinger equation. A perturbative solution of the integral equation

leads to the Born approximation for the scattering amplitude.

Let us consider a scattering experiment in which a beam of particles

is scattered from a target at rest. The frame of reference in which the

∗
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target is at rest will be called the laboratory frame. After the scattering

the particles, at large distances, will be moving, away from the target,

like free particles. We assume the potential between an incident particle,

position ~r1, and the target, at position ~r2 , to be central potential V (r)

which depends only on the relative position,~r = ~r1~r2, of the particle

and the target. We recall that the two particle problem can then be

reduced to the problem of one particle of reduced mass moving in a

potential V (r). The cross section calculated for a particle moving in

potential V (r) equals the scattering cross sections in the centre of mass

frame and must be transformed to the lab frame to establish contact

with experiments.

Knowledge of the classical trajectory of a particle, ~r(t) is sufficient to

compute the cross section in classical mechanics. The classical physics

being deterministic, the particles going into solid angle corresponding to

a cone, covering small range θ, θ+dθ of the scattering angle, are precisely

those which come from a corresponding range of impact parameter b.

Hence we only need to know the relation between the impact parameter
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and the scattering angle to compute the differential cross section σ(θ).

The result is known to be

σ(θ) =
b

sin θ
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In quantum mechanical framework the particles do not have a well de-

fined trajectory and it is not meaningful to associate a well defined range

of impact parameters with a given range of scattering angle. All infor-

mation about a system has to be obtained from the wave function and

must be extracted from the available statistical interpretation of the

wave function.

The scattering process, like any other motion, is a problem of time

evolution. In a scattering experiment, the incident particle is far off from

the target and approaches towards the target reaching a point of closest

approach. After that it moves away from the target and goes to infinity.

A wave packet description the motion of a particle, in accordance with

the time dependent Schrödinger equation, is the framework for a rigorous

and a complete description of the scattering problem. It turns out that

the scattering process can also the viewed as a stationary state problem

and solution of the time independent Schrödinger equation turns out to

be adequate as a first introduction for our present purpose.

Let us consider a thought experiment in which a beam of particles is

incident and getting scattered for all times from −∞ to∞. If take a snap

shot of the beam in the experiment, it would look the same at all times.

It should therefore not come as a surprise that one treat the scattering

in terms of using stationary states. This is not something completely

new, we are already used to treating motion of electrons in an atom as

a stationary process in quantum mechanics. We will, therefore, formu-

late the scattering problem in terms of stationary state solutions, i.e.,

the solutions of the time independent Schrodinger equation. Boundary

conditions for the wave function Assuming a spherically symmetric po-

tential V (r) which goes to zero for large distances, E < 0 corresponds

to possible bound states and the continuous energy solution for E > 0 is

needed for a discussion of to the scattering. The Schrödinger equation

−
~
2

2µ
∇2ψ + V (r)ψ = Eψ (2)

has an infinite number of solutions E > 0. To understand this we look at

the free particle solutions. For a given energy the free particle solutions

can be written as

ψ(~r) = N exp(ikn̂ · ~r) (3)

where k =
√

2E/2~2 and n̂ is a unit vector giving the direction of

propagation. For a fixed energy E there are infinitely many plane wave

solutions corresponding to the direction of propagation specified by the

unit vector n̂. Alternately, the solutions can also be written in terms of

spherical waves of definite angular momentum ℓ and definite Lz value

m

ψ(~r) = C jℓ(kr)Yℓm(θ, φ) (4)

The most general solution will be a superposition of the above spe-

cial solutions. The free particle behaviour will hold for the scattering

solutions for a potential which goes to zero for large distances, giving

infinite number of solutions. Thus specifying the energy alone is not

sufficient to pick a unique solution, it is necessary to specify a boundary

condition suited to the scattering problem. In the stationary descrip-

tion, the solution to Schrodinger equation should describe the incident

beam and an outgoing scattered wave. For short range potentials this

will be a spherical wave with varying amplitude in different directions.
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We demand that the wave function for a definite energy must satisfy the

following boundary condition in the limit r → ∞:

limψ(~r) → eikz + f(θ)
eikr

r
(5)

The above choice of the boundary condition requires an explanation.

The first term has been written for the choice of z axis along the inci-

dent beam of definite energy E. In general, for incident beam having

momentum ki, one must replace the first term by exp(−i~ki · ~r). The

second term represents an outgoing spherical wave, note that the time

dependence of the wave function will e−iEt/~. The factor f(θ)/r rep-

resents the amplitude of the wave at large distances in the direction

θ. Since the intensity of the scattered beam decreases as 1/r2 for large

distance, the amplitude must decrease as 1/r for large r. As of now,

it is not clear that such a solution does exist, in a later subsection we

will show that a solution satisfying the boundary condition Eq.(5) does

exist.

2 Cross section in quantum Theory

Now we come to computation of cross section for scattering from a po-

tential spherical symmetric, finite range potential V (r). We wish to

relate the differential cross section to the scattering amplitude f(θ). Let

us consider a scattering experiment involving a total of N incident par-

ticles sent in time T . The number of particles detected per second by a

detector in a direction θ will be proportional to the flux of the incident

beam and the solid angle subtended by the detector and the constant

of proportionality is just the differential cross section. For a detector

placed at a distance r from the target and having an opening area ∆S,

the solid angle will be ∆Ω = ∆S/r2 Thus we would get

No of particle detected per sec = σ(θ) × ∆Ω× Flux of the

incident beam.

knowing the wave function, the number of particles detected per second

can be computed using the probability current density ~j. The opening

of the detector is kept perpendicular to the radius vector and usually

covers only a small solid angle, the probability of a particle entering the

detector per sec is given by the surface integral
x

S

jrdS ≈ jr∆S (6)

over the surface of the detector, where jr is the radial component of the

probability current. The total number of particles detected per sec will

be N times the expression. Thus Eq.(2) becomes

N × jr∆S = σ(θ)×∆Ω× Flux of the incident beam = σ(θ)∆Ω×Njz.

(7)

where jz is the z component of the probability current. Using

~j = −
~

2iµ
(ψ∗∇ψ − ψ∇ψ∗) (8)

the z component of the probability current for the incident beam eikz is

easily found to be k/. Also the radial component of the of the probability

current for the scattered wave is obtained by substituting f(θ)eikr/r for

ψ(r) in Eq.(8) and taking the radial component. Using

the most important term in the radial component of the current for

the scattered wave becomes

jr =
|f(θ)|2

r2
+O(1/r2). (9)

Using Eq.(8)-Eq.(9) in Eq.(7) gives

(N(|f()|2/r2)∆S = σ(θ)∆ΩN (10)
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With ∆S = r2∆Ω, we get the desired relation

σ(θ) = |f(θ)|2. (11)

We have ignored the terms in the current coming from the interference

of the incident and scattered waves. These are of the order of 1/r2,

and are proportional to exp(ikr(1cos)). Due to the presence of large

r in the exponential, this term oscillates rapidly with and contributes

vanishingly small value to the cross section when summed over a small

range of θ values.
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