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§1 Introduction

We shall take up the method of partial waves for calculating cross section. This method,

applicable to the spherically symmetric potentials, turns out to be particularly useful for

short range potentials at low energies. We shall, therefore, restrict our attention to the

spherically symmetric potentials V (r) which for large r go to zero faster than 1/r2, i.e.,

r2V (r) → 0.

§2 Partial Wave Expansion of Plane Waves

The free particle Schrodinger equation in three dimensions

−
~
2

2µ
∇2ψ = Eψ (1)

can be solved by separating the variables in the cartesian as well as the spherical polar

coordinates. Writing the above equations as

∇2ψ + k2ψ = 0, (2)
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where

k2 =
2µE

~2
, (3)

solution of the free particle Schrodinger equation in the cartesian coordinates is given by

ψ~k(~r) = exp(i~k · ~r). (4)

There are infinite number of solutions, one for each value of the wave vector ~k = (k1, k2, k3).

If we write k = |~k| and ~k = kn̂, the magnitude k is fixed for a fixed energy but the direction

n̂ can be arbitrary. Thus, for each energy value E > 0 the degeneracy is infinite, there

being one solution for each n̂, corresponding to the direction of propagation of the particle.

Note that these solutions are also eigenvectors of the three momentum operators ~̂p which

together with the free particle Hamiltonian form a complete commuting set of operators.

The free particle Schrodinger equation Eq.(2) can also be solved by separating variables

in spherical polar coordinates and we get the solution

ψEℓm(~r) = jℓ(kr)Yℓm(θ, φ) (5)

For a given energy E, again one finds that there are infinite number of solutions, one for

each value of ℓ and m, here ℓ = 0, 1, 2, · · · and m can take integral values from −ℓ to ℓ.

The eigenvectors in Eq.(5) are also simultaneous eigenvectors of ~L2 and ~Lz which together

with the free particle Hamiltonian form another set of commuting operators.

Summarizing the above results, we see that for E > 0 there are two infinite sets of

eigenfunctions given by

Simultaneous energy, momentum eigenfunctions

{

ψ~k(~r) = exp(i~k · ~r)
∣

∣

∣

~k = kn̂, all n̂
}

(6)

Simultaneous energy, angular momentum eigenfunctions

{

ψEℓm(k~r) = jℓ(kr)Yℓm(θ, φ)
∣

∣

∣
ℓ = 0, 1, 2, · · · ;m = −ℓ,−ℓ+ 1, · · · , ℓ

}

(7)

The two sets of eigenfunctions in Eq.(6) and Eq.(7) form two different bases for solutions

of given energy E; every function in Eq.(6) can be expanded in terms of the functions

in the set Eq.(7) and also, every function in Eq.(7) can be expanded in terms of the

functions in the set Eq.(6). Therefore, we can write the plane wave solutions, Eq.(6), as

linear combinations of the spherical wave solutions Eq.(7).

exp(i~k · ~r) =
∑

ℓm

Cℓmjℓ(kr)Yℓm(θ, φ) (8)

We shall now consider a special case when ~k is along the z− axis ~k = (0, 0, k) and ~k · ~r =

kr cos θ. The left hand side depends only on cos θ and is independent of φ.Hence only
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m = 0 terms will be present in the right hand side giving Cℓm = 0 if m 6= 0. Also noting

that

Yℓ0(θ, φ) =

√

2ℓ+ 1

4π
Pℓ(cos θ) (9)

the Eq.(8) takes the form

exp(ikr cos θ) =
∞
∑

ℓ=0

Aℓjℓ(kr)Pℓ(cos θ) (10)

We determine the coefficients Aℓ by using orthogonality property of the Legendre polyno-

mials.
∫ π

0
Pℓ(cos θ)Pn(cos θ) sin θdθ =

2

2ℓ+ 1
δℓn. (11)

Therefore, we multiply Eq.(10) by Pn(cos θ) sin θ and integrate over θ from 0 to π giving
∫ π

0
exp(ikr cos θ)Pn(cos θ) sin θdθ

=
∞
∑

ℓ=0

Aℓjℓ(kr)

∫ π

0
Pℓ(cos θ)Pn(cos θ) sin θdθ

=
∞
∑

ℓ=0

Aℓjℓ(kr)
2

2ℓ+ 1
δℓn (12)

or
∫ π

0
exp(ikr cos θ)Pn(cos θ) sin θdθ =

( 2

2n+ 1

)

Anjn(kr) (13)

Changing the integration variable from θ to t = cos θ in the left hand side we get
∫ 1

−1
exp(ikrt)Pn(t)dt =

2Anjn(kr)

(2n + 1)
(14)

At this stage we should compute the integral on the left hand side and compare with the

right hand side and get the value of An. Instead of trying to compute the integral exactly,

we shall compute it for large r and compare the answer with the large r behaviour of the

right hand side. The large r behaviour of the spherical Bessel function is known and is

given by

jn(kr) −→
1

kr
sin(kr − nπ/2). (15)

The large r asymptotic expansion of the the integral in the left hand side can be found by

integrating by parts as follows.
∫ 1

−1
exp(ikrt)Pn(t)dt

=
1

ikr
eikrtPn(t)

∣

∣

∣

1

−1
−

1

ikr

∫ 1

−1
eikrtP ′

n(t)dt (16)

=
1

ikr

(

eikr − (−1)ne−ikr
)

−
1

(ikr)2
eikrtP ′

n(t)
∣

∣

∣

1

−1
(17)

+ O(
1

(ikr)3
) (18)
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Thus as r → ∞ we get

∫ 1

−1
exp(ikrt)Pn(t)dt −→

1

ikr

(

eikr − (−1)ne−ikr
)

=
einπ/2

ikr

(

eikr−nπ/2 − eikr−nπ/2
)

=
2einπ/2

kr
sin(kr − nπ/2)

=
2einπ/2

kr
cos(kr − (n+ 1)π/2) (19)

Using Eq.(15) and Eq.(19) in Eq.(14) we get

An = (2n + 1)einπ/2 = (2n + 1)in (20)

Thus the expansion of the plane waves, Eq.(10) takes the form

eikz = eikr cos θ =
∞
∑

ℓ=0

(2ℓ+ 1)iℓjℓ(kr)Pℓ(cos θ) . (21)

A formula similar to Eq.(21) can be written down when the plane wave propagates in a

direction other than the z- axis. Let α, β be the polar angles of the direction of propagation

n̂ so that

n̂ = (sinα cos β, sinα sin β, cos β) (22)

If the angle between ~k and ~r is Φ, the relation Eq.(21) assumes the form

ei
~k·~r = eikr cos Φ =

∞
∑

ℓ=0

(2ℓ+ 1)iℓjℓ(kr)Pℓ(cos Φ) (23)

Using the well known addition theorem for spherical harmonics

2ℓ+ 1

4π
Pℓ(cos Φ) =

ℓ
∑

m=−ℓ

Y ∗

ℓm(α, β)Yℓm(θ, φ) (24)

in Eq.(23) we get

ei
~k·~r = 4π

∞
∑

ℓ=0

ℓ
∑

m=−ℓ

iℓjℓ(kr)Y
∗

ℓm(α, β)Yℓm(θ, φ) (25)

§3 Asymptotics of Radial Wave Function

For computing the cross section, we need to solve the energy eigenvalue problem

Hψ = Eψ (26)
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for continuous energies relevant for scattering situations, there are an infinite number of

solutions we need to pick up a solution satisfying the boundary condition

ψ(~r) −→ exp(ikz) + f(θ, φ)
eikr

r
(27)

where f(θ, φ) is the scattering amplitude and |f(θ, φ)|2 gives the cross section. For a

spherically symmetric potential, the Schrodinger equation can be solved by separation of

variables in polar coordinates giving the energy eigenfunctions in the form

uE(r, θ, φ) = REℓ(r)Yℓm(θ, φ) (28)

and the most general solution for a given energy is a superpostion

ψ(~r) =

∞
∑

ℓ=0

ℓ
∑

m=−ℓ

CℓmREℓ(r)Yℓm(θ, φ). (29)

For a spherically symmetric potential, the operators ~L2 and Lz commute with H and

are constants of motion. Thus if incident particle has a definite value of ~L2 and Lz, it

continues to have the same values at all times and the problem of finding the scattering

amplitude is solved by finding the amplitude for different values of ~L2 and Lz separately.

More over, it is sufficient to find the solutions for Lz = 0. This is because if we select the

z− axis parallel to the incident momentum ~ki, the initial value of Lz will be equal to zero

and will remain zero at all times. Recall that

L̂z = −i~
∂

∂φ

and eigenvectors with zero eigenvalue for Lz must be independent of φ. Hence is sufficient

to restrict the sum over m in Eq.(29) to m = 0 terms only and the sum then reduces to

the following form

ψ(~r) =
∞
∑

ℓ=0

CℓREℓ(r)Pℓ(cos θ). (30)

where Yℓ0(θ, φ) = constPℓ(cos θ) has been used. It is therefore sufficient to solve the radial

equation

−
~
2

2µ

1

r2
d

dr

(

r2
dREℓ(r)

dr

)

+

(

E − V (r)−
ℓ(ℓ+ 1)~2

2µ

)

REℓ(r) = 0 (31)

and the knowledge of the asymptotic behaviour of the solution for the radial wave function

Rℓ(r) gives the cross section. The method of partial waves thus consists of the following

steps.

1 Solve the radial equation for Rℓ(r).

2 Find the asymptotic behaviour of the radial wave function Rℓ(r).
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3 Relate the large r behaviour of the radial wave function to the scattering amplitude

and hence to the cross section.

We assume that the potential has a finite range and that the potential V (r) → 0, as

r → ∞, faster than 1
r2 i.e. r2V (r) → 0 as r → ∞. Thus for large r, V (r) can be neglected

as compared

to ℓ(ℓ+ 1)~2/(2µr2) term in the radial equation

~
2

2µ

1

r2
d

dr

(

r2
dREℓ(r)

dr

)

+

(

E − V (r)−
ℓ(ℓ+ 1)~2

2µr2

)

REℓ(r) = 0 (32)

which for large r assumes the form

~
2

2µ

1

r2
d

dr

(

r2
dREℓ(r)

dr

)

+

(

E −
ℓ(ℓ+ 1)~2

2µr2

)

REℓ(r) ≈ 0 (33)

or
1

r2
d

dr

(

r2
dREℓ(r)

dr

)

+

(

k2 −
ℓ(ℓ+ 1)

r2

)

REℓ(r) ≈ 0 (34)

The most general solution of this equation is a linear combination of the spherical Bessel

functions jℓ(kr) and nℓ(kr)

REℓ(r)
r→∞

≈ Aℓjℓ(kr) +Bℓnℓ(kr) (35)

Note even though the radial equation looks like a free radial particle equation, the com-

bination Eq.(35) is approximate solution for large r only, where as for the free particle

solution is jℓ(kr) for all r, a term nℓ(kr) is absent in the free particle solution. Since we

are interested only in large r behaviour of the radial wave function, we use the following

asymptotic expansions for spherical the Bessel functions.

jℓ(kr) ≈
1

kr
cos(kr − ℓ(ℓ+ 1)π/2) (36)

nℓ(kr) ≈
1

kr
sin(kr − ℓ(ℓ+ 1)π/2) (37)

Using Eq.(36) and Eq.(37) we get the following results for the asymptotic form of the

radial wave functions.

Free Particle Solution

The free particle radial wave function is

REℓ(r) = Cℓ jℓ(kr) (38)

≈
Cℓ

kr
cos(kr − (ℓ+ 1)π/2) (39)
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Scattering Solution for V (r) 6= 0

for the radial wave function is

REℓ(r) = Aℓjℓ(kr) +Bℓnℓ(kr) (40)

≈
1

kr

(

Aℓ cos(kr − (ℓ+ 1)
π

2
)

+Bℓ sin(kr − (ℓ+ 1)
π

2
)
)

(41)

=
A′

ℓ

kr
cos(kr − (ℓ+ 1)π/2 + δℓ) (42)

where we have defined

A′

ℓ =
√

A2
ℓ +B2

ℓ , tan δℓ = −Bℓ/Aℓ (43)

Comparing the scattering solution for the potential Eq.(43) with the free particle solution

Eq.(39), we find that the Eq.(42) is shifted by a phase δℓ given by Eq.(43). This quantity

δℓ is called the phase shift for the ℓth partial wave. The phase shift is a function of

energy, and of course the angular momentum ℓ, and carry all the information about the

scattering for angular momentum ℓ.

§4 Relating Cross Section to Phase Shifts

In order to derive an expression for the scattering amplitude in terms of the phase shifts,

we substitute the partial wave expansion for the plane waves

eikz = eikr cos θ =

∞
∑

ℓ=0

(2ℓ+ 1)iℓjℓ(kr)Pℓ(cos θ), (44)

and that of the wave function corresponding to the scattering solution

ψ(~r) =

∞
∑

ℓ=0

CℓREℓ(r)Pℓ(cos θ) (45)

with REℓ(r) having an asymptotic expansion of the form

REℓ(r) ≈
A′

ℓ

kr
cos(kr − (ℓ+ 1)π/2 + δℓ) (46)

≈
A′

ℓ

kr
sin(kr − ℓπ/2 + δℓ) (47)

in the boundary condition to be required of the wave function for large r

ψ(~r) −→ exp(i~k · ~z) + f(θ, φ)
eikr

r
(48)

and collect the coefficients of exp(±ikr) in the the sides of Eq.(48). This gives us the

following expression for the left and the right hand sides of Eq.(48).
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Left hand side of Eq.(48)

The wave function is a superposition of the radial solution for different partial waves and

we have

L.H.S. = ψ(~r) (49)

=

∞
∑

ℓ=0

CℓREℓ(r)Pℓ(cos θ) (50)

≈
∞
∑

ℓ=0

A′

ℓPℓ(cos θ)
1

kr
sin(kr − ℓπ/2 + δℓ) (51)

=
∞
∑

ℓ=0

A′

ℓPℓ(cos θ)
1

2ikr

{

ei(kr−ℓπ/2+δℓ) − e−i(kr−ℓπ/2+δℓ)
}

(52)

=
eikr

2ikr

{

∞
∑

ℓ=0

A′

ℓPℓ(cos θ)e
iδℓ

}

−
e−ikr

2ikr

{

∞
∑

ℓ=0

A′

ℓPℓ(cos θ)e
iℓπ/2e−iδℓ

}

(53)

Right hand side of Eq.(48)

We make use of the plane wave expansion in the right hand side to get

∞
∑

ℓ=0

(2ℓ+ 1)iℓjℓ(kr)Pℓ(cos θ) + f(θ)
eikr

r

≈
∞
∑

ℓ=0

(2ℓ+ 1)iℓ
1

kr
sin(kr − ℓπ/2 + δℓ)Pℓ(cos θ) + f(θ)

eikr

r

=
1

2ikr

∞
∑

ℓ=0

(2ℓ+ 1)iℓ
{

ei(kr−ℓπ/2+δℓ) − e−i(kr−ℓπ/2+δℓ)
}

(54)

×Pℓ(cos θ) + f(θ)
eikr

r

=
eikr

2ikr

{

2ikf(θ) +
∞
∑

ℓ=0

(2ℓ+ 1)iℓPℓ(cos θ)e
−iℓπ/2

}

−
e−ikr

2ikr

{

∞
∑

ℓ=0

(2ℓ+ 1)iℓPℓ(cos θ)e
iℓπ/2

}

(55)

Since the exponentials eikr and e−ikr are linearly independent functions, their coefficients

in Eq.(48) must be equal giving

2ikf(θ) +

∞
∑

ℓ=0

(2ℓ+ 1)iℓPℓ(cos θ)e
−iℓπ/2 =

∞
∑

ℓ=0

A′

ℓPℓ(cos θ)e
−iℓπ/2eiδℓ (56)
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and
∞
∑

ℓ=0

(2ℓ+ 1)iℓPℓ(cos θ)e
iℓπ/2 =

∞
∑

ℓ=0

A′

ℓPℓ(cos θ)e
iℓπ/2e−iδℓ (57)

Because the Legendre polynomials Pℓ(cos θ) are linearly independent, their coefficients in

the two sides of Eq.(57) must be equal. This gives

A′

ℓ = (2ℓ+ 1)iℓeiδℓ (58)

Substituting Eq.(58) in Eq.(56) and noting iℓ = eiℓπ/2, we get

2ikf(θ) = −

∞
∑

ℓ=0

(2ℓ+ 1)Pℓ(cos θ) +

∞
∑

ℓ=0

(2ℓ+ 1)e2iδℓPℓ(cos θ)

=

∞
∑

ℓ=0

(2ℓ+ 1)Pℓ(cos θ)
(

e2iδℓ − 1
)

(59)

Therefore

f(θ) =
1

2ik

∞
∑

ℓ=0

(2ℓ+ 1)Pℓ(cos θ)
(

e2iδℓ − 1
)

(60)

gives the scattering amplitude. The differential cross section is given by

dσ

dΩ
= |f(θ)|2 (61)

and the total cross section is

σtotal =

∫

dσ

dΩ
dΩ (62)

=

∫ π

0
|f(θ)|2 2π sin θ dθ (63)

The θ integration can be completed using orthogonality of the Legendre polynomials and

one gets

σtotal =

(

4π

k2

) ∞
∑

ℓ=0

(2ℓ+ 1) sin2 δℓ (64)

§5 Phase Shifts for Square Well

Problem 1: Compute the phase shifts for a square well potential.

V (r) =

{

−V0 if r < R0,

0 if r > R0.
(65)
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,Solution: The radial equation for a spherically symmetric potential V (r) is

−
~
2

2µ

1

r2
d

dr

(

r2
dRℓ(r)

dr

)

+

(

E − V (r)−
ℓ(ℓ+ 1)~2

2µr2

)

Rℓ(r) = 0 (66)

For r < R0, the potential is −V0 and the most general solution of the radial equation is

R
(I)
ℓ (r) = αjℓ(qr) + βnℓ(qr) r < R0 (67)

where q2 = 2µ(E + V0)/~
2 and for r > R0 the potential is zero and the most general solution is

R
(II)
ℓ (r) = α′jℓ(kr) + β′nℓ(kr), r > R0, (68)

where k2 = 2µE/~2. Next we must impose regularity conditions on the solutions. Since nℓ(ρ) blows up as
ρ → 0, we demand that β in Eq.(67) must be zero. Next the radial solution and its first derivative must
be continuous at all points, in particular at r = R0. These two conditions give the restrictions

R(I)(r)|r=R0
= R(II)(r)|r=R0

(69)

dR(I)(r)

dr

∣

∣

∣

∣

r=R0

=
dR(II)(r)

dr

∣

∣

∣

∣

r=R0

(70)

Taking into account of the form of the solution we get

αjℓ(qR0) = α′jℓ(kR0) + β′nℓ(kR0) (71)

αqj′ℓ(qR0) = α′kj′ℓ(kR0) + β′kn′

ℓ(kR0) (72)

Dividing Eq.(72) by Eq.(71) we get

qj′ℓ(qR0)

jℓ(qR0)
=

α′kj′ℓ(kR0) + β′kn′

ℓ(kR0)

α′jℓ(kR0) + β′nℓ(kR0)
(73)

o
qj′ℓ(qR0)

jℓ(qR0)
=

kj′ℓ(kR0) + k(β′/α′)n′

ℓ(kR0)

jℓ(kR0) + (β′/α′)nℓ(kR0)
(74)

Noting that the phase shift is given by tan δℓ = −(β′/α′), we solve for (β′/α′) to get

tan δℓ =





k
q

j′
ℓ
(kR0)

nℓ(kR0

jℓ(qR0)
j′
ℓ
(qR0)

− nℓ(kR0)
nℓ(kR0)

1− k
q

jℓ(qR0)
j′
ℓ
(qR0)

n′

ℓ
(kR0)

nℓ(kR0)



 (75)

For ℓ = 0, using the expressions for the spherical Bessel functions in terms of sine and cosine functions,
for s− wave one can easily obtain

tan (δ0(k) + kR0) =
k

q
tan(qR0) (76)

wave
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