VS-02 Question Bank Linear Independence, Basis and Dimension

A. K. Kapoor

kapoor.proofs@gmail.com akkhcu@gmail.com

August 23, 2016

© vs-que-02001

P rove that in \mathbb{R}^3 , three vectors $\vec{A}, \vec{B}, \vec{C}$ are linearly independent if and only if $\vec{A} \cdot \vec{B} \times \vec{C} \neq 0$.

How does this result generalize to vector space \mathbb{C}^n ?

 \odot vs-que-02002

Prove that the set of matrices

$$\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}, \quad \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}, \quad \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \quad \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix},$$

is a basis in the real vector space of all 2×2 real matrices.

© vs-que-02003

- [1] Show that the three Pauli matrices $\sigma_x, \sigma_y, \sigma_z$ do not form a basis in the complex vector space of all 2×2 complex matrices by giving an example of matrix which cannot be written as a linear combination of Pauli matrices.
- [2] Describe the linear span of the three Pauli matrices in words.

© vs-que-02004

Do the vectors (1, 1, 1, -1), (1, 1, -1, 1), (1, -1, 1, 1), (-1, 1, 1, 1) form a basis in \mathbb{R}^4 ? If your answer is 'YES' give a proof, if your answer is 'NO' give an example of a vector which is not a linear combination of these vectors.

© vs-que-02005

Check if the vectors (1,1,1,-1), (1,1,-1,1), (1,-1,1,1), in \mathbb{R}^4 , are linearly independent. Do they form a basis in \mathbb{R}^4 ? If your answer is 'YES' give a proof, if your answer is 'NO' give an example of a vector which is not a linear combination of these vectors.

\odot vs-que-02006

- (a) Consider the vector space of all real numbers with field of all real numbers. Is the set $\{1, \sqrt{2}\}$ linearly independent? Does it form a basis? Give an explanation of your answer.
- (b) Let \mathscr{V} be the vector space of all real numbers with the set \mathbb{Q} as the field. Is the set $\{1, \sqrt{2}\}$ linearly independent? Why? Does it form a basis?

\odot vs-que- $02\overline{007}$

- (a) Give an example of a basis in the complex vector space $\mathbb C$ over the field of all complex numbers.
- (b) Let \mathscr{V} be the vector space of all complex numbers with the set \mathbb{R} as the field of scalars. Is the set $S = \{1 + i, 1 i\}$ linearly independent? Does it form a basis? What is the linear span of S?

Anon FileName:VS-QBank-02.pdf
Location: http://0space.org/node/1425
Created:Jul 23, 2016 Printed August 23, 2016

No Warranty, implied or otherwise PROOFS http://0space.org/node/756 License: Creative Commons