QM-08 Question Bank Canonical Quantization Using Commutators *

A. K. Kapoor

Abstract

Finding matrix element between harmonic oscillator states, Ladder operators and eignefunctions of angular momentum, Constructing matrices for angular momentum operators, Zero point energy, Allowed values of j,m

 \odot qm-que-08001

Zero point energy The potential energy of two protons in hydrogen molecule ion in a model is given below

$$V(x) = |E_1|f(x) \tag{1}$$

$$f(x) = -1 + \frac{2}{x} \left[\frac{(1 - (2/3)x^2)e^{-x} + (1+x)e^{-2x}}{1 + (1+x+x^2/3)e^{-x}} \right], \qquad x = R/a$$
 (2)

 $E_1 = 13.6 \text{ eV}$ is the ground state energy of H atom and a is the Bohr radius \hbar^2/me^2 . The graph of this function f(x) is reproduced below. Find numerical values of the bond length in A^o , the zero point energy and spacing of vibrational spectrum, both energies in electron volts.

QM-QBank-08.tex

 $^{^{\}ast}$ ver 1.x; Date
Created: Apr 14, 2015

\odot qm-que-08002

State if the combinations of j, m values, in the table given below, are allowed or not. Complete the table by writing ALLOWED/NOT ALLOWED in the second column and specifying a reason in support of your answer selecting a reason from the list, (R1) - (R5), given below. In case you do not find a valid or appropriate reason listed below, feel free to select option (R6) and specify your reason.¹

List of Possible Reasons:

- (R1) All values of jm are allowed.
- (R2) Not allowed because m is not an integer
- (R3) Allowed because all vales of m in the range -j to +j are allowed
- (R4) Not allowed because j, m must be an integers
- (R5) Not allowed because both j, m must be integers, or half integers.
- (R6) Any other reason, please specify for each case separately

\odot qm-que-08003

 $^{^1{\}rm This}$ question requires knowledge of angular momentum eigenvalues.

Compute average value $\langle n|q^4|n\rangle$ of q^4 in the $n^{\rm th}$ energy state of harmonic oscillator.

\odot qm-que-08004

Let $|n\rangle$ denote the n^{th} excited state of a harmonic oscillator. Show that

$$\langle n|x|m\rangle = \sqrt{\frac{\hbar}{2m\omega}} \left(\sqrt{n+1}\delta_{m,n+1} + \sqrt{n}\delta_{m,n-1}\right)$$

\odot qm-que-08005

The the exact zero point energy of a several coupled oscillators is given to be $3.1415\hbar\omega_0$. What is the energy of first excited state?

© qm-que-08006

- (a) What are the eigenvalues of $L^2 + \alpha L_x + \beta L_y + \gamma L_z$ for $\ell = 2$. Give a full explanation for your answer.
- (b) Construct matrices for L_x, L_y, L_z for $\ell = 1$ case and verify that L^2 is a multiple of identity.

\odot qm-que-08007

Let $Y_{\ell m}(\theta, \phi)$ denote the simultaneous normalized eigenfunctions of L^2 and L_z operators. Use the properties of the ladder operators, L_{\pm} , and construct the expressions for $Y_{lm}(\theta, \phi)$ for l=2 and m=2,1,0,-1,-2.

Hint: $Y_{\ell\ell}(\theta,\phi)$ satisfies

$$L_z Y_{\ell\ell}(\theta, \phi) = \ell \hbar Y_{\ell\ell}(\theta, \phi) \tag{3}$$

$$L_{+}Y_{\ell\ell}(\theta,\phi) = 0. \tag{4}$$

Set up these differential equations and solve to find (normalized) Y_{22} . Next apply L_{-} repeatedly and use

$$L_{-}Y_{\ell m} = \sqrt{\ell(\ell+1) - m(m+1)} \, \hbar \, Y_{\ell(m-1)}$$

to successively construct Y_{2m} for other values m = 1, 0, -1, -2.