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§1 Cyclic Coordinates

Newton’s EOM and also the Euler Lagrange equations, are second order differential equa-

tions. The knowledge of conservation laws and of constants of motion greatly simplifies

the task of obtaining solutions to the EOM. This is most clearly seen in one dimension,

where use of conservation law for energy reduces the problem to quadrature.

The existence of conservation laws can be inferred from the symmetry properties of

the Lagrangian by appealing to Noether’s Theorem. However, this requires some amount

of training in most cases. There is a class of symmetries and associated conservation

laws, which can be can be arrived at by inspection. If the Lagrangian is independent of a
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particular coordinate qr, it depends only on generalised velocity q̇r we have a conservation

law. Such a coordinate is called cyclic coordinate or ignorable coordinate. If qr is a

Cyclic coordinate, then
∂L

∂qr
= 0 (1)

and the Euler’s Lagrange EOM

∂L

∂qr
−

d

dt

(

∂L

∂q̇r

)

= 0 (2)

implies that
d

dt

∂L

∂q̇r
= 0 =⇒

∂L

∂q̇r
= constant. (3)

Hence the canonical momentum conjugate to qr is a constant of motion.

The expression for of velocity corresponding to the cyclic coordinates can be obtained

from Eq.(3) as a function of other coordinates and velocities. Thus the cyclic coordinate

and the corresponding velocity then get eliminated from the equations of motion. In fact

one can write down a Lagrangian for the remaining coordinates, which gives correct EOM

for them. We now give this process.

Let qa, a = 1, 2, 3, . . . ,m be cyclic coordinates and corresponding momenta pa = βa

are constants, say βa. Then

pa(q, q̇, t) = βa (4)

We use (4) to solve for velocities q̇a, a = 1, 2, . . . ,m and express them as functions of the

constants βa and the remaining coordinates qk and velocities q̇k

q̇a = q̇a(β, qk, q̇k, t) (5)

The function

R = L−

m
∑

a=1

q̇a

(

∂L

∂q̇a

)

(6)

= L−

m
∑

a=1

βaq̇a (7)

when expressed in terms of q̇k, qk, βa, describes the dynamics of the remaining coordinates.

Note that the new ’Lagrangian’ cannot be obtained from the old one by simply elimi-

nating the velocities q̇a by making use of (4).

§2 Spherically Symmetric Potential

§2.1 Reduction of Two Body Problem

Consider two particles interacting through a potential. Which only on the distance between

the two. The Lagrangian can be written as

L =
1

2
m1~̇r

2
1 +

1

2
m2~̇r

2
2 − V (|~r2 − ~r1|). (8)
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§2.2 Conservation Laws §2.2 Conservation Laws

We now introduce the position vector of the centre of mass ~R, and the relative coordinate

~r by means of

~R =
m1~r1 +m2~r2
(m1 +m2)

, ~r = (~r1 − ~r2), (9)

and express the Lagrangian in terms of the new variables takes the form

L =
1

2
M ~̇R 2 +

1

2
µ~̇r2 − V (r). (10)

where M is the total mass, and µ is reduced mass.

M = m1 +m2, µ =
m1m2

m1 +m2
. (11)

The equations of motion for ~R are simple and just state that the center of mass moves with

constant velocity. The rest of the terms in the Lagrangian describe motion of a particle of

mass µ in a potential V (r). The potential V (r) depends only on r = |~r| and is independent

of θ, φ. Such potentials are called spherically symmetric potentials.

§2.2 Conservation Laws

Let the Lagrangian of a system to be studied be given by

L =
1

2
µ~̇r 2 − V (r) (12)

The Lagrangian does not contain time explicitly, hence we obtain energy conservation

1

2
µ~̇r 2 + V (r) = E (constant). (13)

The Lagrangian is also invariant under rotations about any axis and in particular about

the coordinate axes. This gives us conservation of angular momentum. Thus we have

~L = µ~r × ~v = constant of motion (14)

§2.3 Reduction of solution to quadratures

We shall now make use of the conservation laws to give solution of motion in a spherically

symmetric potential to quadratures.

Since ~L = µ~r × ~v is a constant of motion the magnitude as the direction of ~L does

not change with time. Also ~r and ~v always perpendicular to ~L which points in a fixed

direction. Hence ~r and ~v remain in the plane perpendicular to ~L. Therefore for a particle

in a spherically symmetric potential, the motion is confined to a plane.

If ~L is zero, then ~r × ~v = 0 and ~r will always be parallel to ~v and the particle moves

in a straight line.

We, therefore, start with Lagrangian for a particle in two dimensions in plane polar

coordinates

L =
1

2
µ~̇r 2 +

1

2
µr 2φ̇2 − V (r). (15)

The expression for energy, associated with relative motion, given by

E =
1

2
µṙ2 +

1

2
µr2φ̇2 + V (r). (16)
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§2.3 Reduction of solution to quadratures §2.3 Reduction of solution to quadratures

Since φ̇ is a cyclic coordinate we have

∂L

∂φ̇
= µr2φ̇ = constant, sayL. (17)

µr2φ̇ is in fact seen to be equal to the magnitude of angular momentum. The velocity φ̇

can be eliminated using

φ̇ =
L

2µr2
(18)

Making use of (16) and (18) we get,

E =
1

2
µṙ2 +

L2

2µr2
+ V (r) =

1

2
µṙ2 + Veff(r) (19)

where we have introduced the notation

Veff(r) = V (r) +
L2

2µr2
. (20)

The radial motion of the particle is seen to be like motion in one dimension with Veff (r)

as the potential. Solving (20) for ṙ we get

ṙ2 =
2

µ

(

E − V (r)−
L2

2µr2

)

, (21)

or

dr

dt
=

√

2

µ
(E − V (r))−

L2

2mr2
. (22)

Integrating we get

t =

∫

dr
√

2
µ
(E − V (r))− L2

2mr2

+ c (23)

This equation when inverted gives r as a function of t and using (18) we get φ as a function

of time

φ̇ =
L

mr2
(24)

dφ =
L

mr2
dt (25)

which gives

φ =

∫

L

mr2
dt+ constant (26)

It is understood that r is to be obtained a function of time from (23) and is substituted

in the R.H.S of (26).

The equation of the orbit, relation between r and φ, is easily obtained from Eq.(22)

and Eq.(24)

dr

dφ
=

(dr

dt

)/(dφ

dt

)

, (27)

=

√

2

µ

(

E − V (r)−
L2

2mr2

)

×

(

µr2

L

)

. (28)
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Therefore, we get

dr =

√

2

µ

(

E − V (r)−
L2

2mr2

)

×

(

µr2

L

)

dφ, (29)

or

φ =

∫
(

L

µr2

)

dr
√

2
µ

(

E − V (r)− L2

2µr2

)

+ constant. (30)

Thus the problem of determining r and φ as a function of time and the problem of finding

the orbit has been reduced to quadratures. In many cases it turns out to be useful to

change variable to u = 1/r, and write Eq.(30) can be rewritten as

φ =

∫

1

r2
dr

√

(

2µE
L2 − 2µV (r)

L2 − 1
r2

)

+ constant, (31)

or

φ− φ0 = −

∫ u

u0

du
√

(

2µE
L2 − 2µ

L2V ( 1
u
)− u2

)

. (32)

§3 Differential Equations of the Orbit

The equation of motion for a particle in a spherical symmetric potential can be solved

making use of the conservation laws. Here we obtain a second order differential equation,

which is sometimes easy to solve.

The Lagrangian for a particle in spherical symmetric potential, assuming motion in a

plane, is

L =
1

2
µṙ 2 +

1

2
mr 2φ̇ 2 − V (r) (33)

The Euler Lagrangian equations are

d

dt

(

∂L

∂ṙ

)

−
∂L

∂r
= 0 (34)

d

dt
(µṙ)− µrφ̇2 +

∂V

∂r
= 0 (35)

and

µr2φ̇ = constant, sayL (36)

Let f(r) = −∂V
∂r

be the force law, then (35) and (36) give

µ r̈ = f(r) +
L2

µr3
(37)

Next use Eq.(36) to convert r̈ into d2r
dφ2

dr

dt
=

dr

dφ

(

dφ

dt

)

(38)

=
L

µr2
dr

dφ
(39)
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§3.1 The Kepler Problem §3.1 The Kepler Problem

and
d2r

dt2
=

L

µr2
d

dφ

L

µr2
dr

dφ
=

L2

µ2r2
d

dφ

1

r2
dr

dφ
(40)

Changing variables from r to u = 1
r
, we get

du

dφ
= −

1

r2
dr

dφ
(41)

and

d2u

dφ2
= −

d

dφ

1

r2
dr

dφ2
. (42)

Using (40) and (42) in Eq.(37), we get

L2

µr2
d

dφ

1

r2
dr

dφ
= f(r) +

L2

µr3
(43)

∴ −
L2

r2
1

µ

d2u

dφ2
= f

(

1

u

)

+
L2

µ
u3 (44)

or
L2u2

µ

d2u

dφ2
= −f

(

1

u

)

−
L2

µ
u3 (45)

This is the required differential equation of the orbit. If the equation of the orbit is known

the force law can be found.

§3.1 The Kepler Problem

We shall now solve the differential Eq.(45) for the attractive inverse square law of force.

f = −
k

r2
= −ku2 (46)

The differential equation of the orbit, Eq.(45) becomes

L2

µ

d2u

dφ2
= k −

L2

µ
u. (47)

or
d2u

dφ2
+ u−

µk

L2
= 0 (48)

We now change the variable to w = u− mk
L2 to get

d2w

dφ2
+ w = 0 (49)

This equation can be solved immediately to give

w = b cos(φ− φ0) (50)

or

u =
µk

L2
+ b cos(φ− φ0) (51)
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§3.1 The Kepler Problem §3.1 The Kepler Problem

Hence the equation of the orbit can be written in the form

1

r
=

µk

L2
(1 + ǫ cos(φ− φ0)) (52)

Recall L = angular momentum, ǫ, and φ0 are constants of motion. We shall now relate

r1, r2, ǫ and energy E.

If r1 and r2 are the minimum and maximum values of r, then from (19)

1

r1,2
=

µk

L2
(1± ǫ) (53)

We relate these values r1,2 in terms to E. At maximum of r and also at minimum,

ṙ = 0 and the energy conservation equation

E =
1

2
µṙ2 +

L2

2µr2
+ V (r) (54)

becomes

E =
L2

2µr2
−

k

r
(∵ ṙ = 0), (55)

or
1

r2
−

2µk

L2r
−

2µE

L2
= 0. (56)

The values r1 and r2 are roots of this equation, hence

1

r1
+

1

r2
=

2µu

L2
(57)

1

r1

1

r2
=

−2µE

L2
(58)

Eq.(53) and (58) give us the desired expressions for ǫ in terms of energy

µ2k2

L4
(1− ǫ2) =

−2µE

L2
(59)

or

ǫ2 − 1 =
2EL2

µk2
(60)

ǫ =

√

1 +
2EL2

µk2
(61)

Therefore, the final form of the equation of the orbit is

1

r
=

µk

L2
(1 + ǫ cos(φ− φ0)) (62)

φ0 is the value of φ at the turning point r = rmin. This equation represents a conic section

with eccentricity = ǫ. Types of orbits traversed, corresponding to different values of ǫ, are

summarised below.

ǫ < 1 Ellipse if E < 0 bounded motion

ǫ = 0 Circle E = −µk2

2L2 bounded motion

ǫ = 1 Parabola E = 0 unbounded motion

ǫ > 1 Hyperbola E > 0 unbounded motion
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§3.2 Kepler’s Laws §3.2 Kepler’s Laws

§3.2 Kepler’s Laws

1. The motion in 1
r
gravitational fields is in elliptic orbits.

2. Areal velocity is constant follows from the conservation laws of angular momentum.

µr2φ̇ = constant, sayL =⇒ r2φ̇ =
L

µ
= constant

Areal velocity = lim
∆t→0

area swept in time∆t

∆t
(63)

= lim
∆t→0

1

2
r2

∆φ

∆t
=

1

2
r2φ̇ (64)

=
L

2µ
= constant (65)

Fig. 1

3. To calculate the time period and verify Kepler’s third law, since areal velocity is

constant

Time Period T =
Total area of the orbit

areal velocity
(66)

=
πab

( L
2µ)

=
2µ

L
(πab) (67)

Now semi major axis

2a = r1 + r2 =
k

|E|
(68)
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§3.3 Hyperbolic Orbits §3.3 Hyperbolic Orbits

where (24) and (25) has been used. Remember E is negative for elliptic orbits, so E =

−|E|. Now

b = a
√

1− ǫ2 = a

(

2|E|L2

µk2

)

1
2

, (69)

Using Eq.(67)-(69) we get

T = πab
2µ

L
=

2πaµ

L
a

(

2|E|L2

µk2

)

1
2

(70)

use |E| = k
2a , from (68), and eliminate E

T =
2πa2µ

L

(

2L2

µk2
k

2a

)

1
2

=
2πa2µ

L

(

L2

kµa

)

1
2

, (71)

= 2πa
3
2

√

µ

k
, (72)

Now use k = GMm and µ = mM
M+m

to get

T 2 =
4π2a3

G(M +m)
. (73)

In this expression mass m of the planet can be neglected compared to the mass of the sun

M . This proves Kepler’s law that square of time period is proportional to the cube of

semi major axis. Note that the time period has a tiny dependence on the mass of planet

which has been neglected.

§3.3 Hyperbolic Orbits

We will now derive equation of orbit when E > 0 and the orbits are hyperbolic. The

distance of closest approach corresponds to r = minimum and 1
r
will be a maximum. This

happens at cos(φ− φ0) = 1

1
r
= a(1 + ǫ cos(φ− φ0)) r = rmin =⇒ φ = φ0

As r −→ ∞, (note ǫ > 0)1
r
−→ 0 and cos(φ− φ0) −→

−1
ǫ

φ− φ0 = π ± cos−1

(

1

ǫ

)

(74)

φ± = φ0 + π ± cos−1

(

1

ǫ

)

. (75)

The total deflection of the particle in hyperbolic orbit is

θ = φ+ − φ− = 2cos−1

(

1

ǫ

)

(76)
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§3.4 Runge Lenz vector §3.4 Runge Lenz vector

or

cos

(

θ

2

)

=
1

ǫ
=

(

1 +
2EL2

µk2

)−1

(77)

cos

(

θ

2

)

=

(

1 +
2EL2

µk2

)−1

(78)

=
µk2

(µk2 + 2EL2)
(79)

§3.4 Runge Lenz vector

For the Kepler problem there is an additional constant of motion, given by

~N = ~v × ~L+
k~r

r
(80)

Proof: The equations of motion are

d

dt
m~v = −~▽

(

k

r

)

= +
k~r

r3
(81)

d ~N

dt
=

d~v

dt
× ~L+ ~v ×

(

d~L

dt

)

+
k

r

d~r

dt
− k~r

(

ṙ

r2

)

(82)

=
1

6 m

(

k~r

r3

)

× (~r× 6 m~v) +
k~̇r

r
− k~r

(

~r · ~v

r3

)

(83)

=
−1

6 m

k~r 2

r3
6 m~v +

k(~r.~v)~r

r3
+

k~v

r
− k~r

(~r · ~v)

r3
(84)

= 0 (85)

§4 General Properties of Motion

The radial motion in three dimensions in a spherically symmetric potential is just like

motion in one dimension. The following discussion of motion in one dimension can be

usefully extended to the radial motion in a spherically symmetric potential, if we replace

the potential by the effective potential.

V (x) −→ Veff(r) = V (r) +
L2

2mr2
(86)

§4.1 Motion in one dimension

We first recall a few general properties of motion of particle in one dimension. These will

be used to discuss motion in a spherically symmetric potential
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§4.2 Motion in spherically symmetric potential§4.2 Motion in spherically symmetric potential

Equilibrium points

If a particle, moving in one dimension, is released from rest at some point, it will in general

move towards lower potential energy. If it is released at a minimum or maximum of the

potential, it will remain at rest It therefore follows that at these points ẋ = ẍ = 0.

Let x0 be a point where the particle in equilibrium.

If the point x0 is a minimum of the potential and the particle is disturbed slightly, it

will execute oscillations about the minimum. In this case we say that the point x0 is a

point of {it stable equilibrium}.

If the equilibrium point is a maximum of the potential and even a slightest disturbance

will make the particle move away from the equilibrium. In this case we say that the

equilibrium is unstable.

Turning points

1. A particle moving in a potential cannot go to regions where its energy is less than

the potential energy. Its motion is confined to those values of x where

V (x) ≤ E

. To see this note that we must have

E =
p2

2m
+ V (x) (87)

∴ E ≥ V (x) (88)

∵ K.E. = p2

2m > 0 .

2. The region, the set of values of x where (87) holds, is called classically accessible

region.

3. The points where E = V (x) are called turning points. At a turning point the velocity

becomes zero, ẋ = 0.

Properties of motion in three dimensions can be obtained by using the effective poten-

tial and using similar arguments.

Range of energies for bounded motion

Assuming a continuous potential V (x), the potential will have a minimum or a maximum

between two turning points. For a given energy, a particle will execute a bounded motion

if the potential has two turning points such that it has a minimum between the turning

points.

§4.2 Motion in spherically symmetric potential

It will be useful to recall that for a motion in three dimensional spherically symmetric

potential

E =
1

2
mṙ2 + Veff(r). (89)

The similarity of the above equation with Eq.(87) should be noted.
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§4.2 Motion in spherically symmetric potential§4.2 Motion in spherically symmetric potential

Nature of Orbits

1. Conservation of angular momentum implies the motion of particle is in a plane

2. If angular momentum is zero, ~r × ~p = 0. =⇒ ~r and ~p are parallel. In this case the

particle moves in a straight line.

3. If angular momentum is nonzero, the bounded or unbounded nature of the orbit can

be decided in the same fashion as in one dimension by looking at the plot of the

effective potential.

4. The motion is always confined to region where

E ≥ Veff(r). (90)

For a bounded motion, r varies between two extreme values r1 and r2, which corre-

spond to the turning points. For these points the radial velocity becomes zero and

the total energy is given by Veff(r1) = Veff(r2) = E.

Circular orbits

1. The equilibrium in one dimension correspond to a fixed value of x(t) = constant and

ẋ = ẍ = 0 for all times. In three dimensions r(t) = constant, R corresponds to a

circular orbit. For a circular orbit of radius R, we will have ṙ = r̈ = 0 for all times.

Thus the radius of a circular orbit is given by minima and maxima of the effective

potential, (use (89)).
dVeff(r)

dr

∣

∣

∣

r=R
= 0. (91)

2. r = constant. and angular momentum conservation mr2φ̇ = constant imply

φ̇ = constant.

Thus the particle moving in a circular orbit has a constant constant angular velocity.

3. For a bounded motion we will have r1 < r < r2 and for a circular orbit of radius R,

we must have r1 = r2 = R and the energy is given by E = Veff(R). See Fig.2.

Fig. 2
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§4.2 Motion in spherically symmetric potential§4.2 Motion in spherically symmetric potential

Stability of circular orbits

For a circular orbit radial velocity and acceleration are zero. Hencemr̈ = 0 =⇒ ∂
∂r

(

V (r) + L2

mr2

)

=

0. Thus the circular orbits correspond to the maxima and minima of the effective potential

Veff(r).

The maximum corresponds to an unstable circular orbit orbit. The minimum corre-

sponds to a stable circular orbit.

r = r0 + η

Fall to center

Let V(r) be finite as r −→ 0. Then Veff(r) −→ ∞ as r −→ 0 and a particle cannot reach

r=0 for any value of E. However, for certain singular potentials the particle can reach

center. Consider, for example, the case of a potential V = −g
r4
, g > 0. Then the effective

potential is

Veff =
−g

r4
+

L2

2mr2
(92)

A sketch of the effective potential is shown in Fig.3. If E > maximum of Veff, then a

particle coming from large distance can fall to center.

r

V  (r)
eff

Fig. 3 Fall to centre

Escape to ∞

Assume V (r) −→ 0 as r −→ ∞

r

V  (r)
eff

Fig. 4 Escape to infinity
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§4.2 Motion in spherically symmetric potential§4.2 Motion in spherically symmetric potential

A particle moving out can escape to infinity if E > maximum of Veff for r > 0.
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