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§1 Hamilton’s principle

§1.1 Configuration space

Let us consider a system with N degrees of freedom. At a given time the
system is completely specified by giving values the values of N generalised
coordinates q1(t), . . . , q1(N). We may arrange q′s in a row to form an N

component vector
q = (q1(t), . . . , qN (t)) (1)

the N component vector can be represented by points in an N dimensional
space called configuration space. Conversely a point in configuration space
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represents a possible set of values of (q1, . . . , qN )

We say that possible states of system are given by points in configuration
space.

With time q′ change and also does the position of the point representing
the system. Thus with time, the point representing the system will trace
out a path in configuration space. As Euler Lagrange equations are second
order differential equations, the motion of the system, the state at any time
is completely known if we specify the initial values of q and q̇ at some time
t0.. With this as input solving the Euler Lagrange equations of motion give
the generalised coordinates q(t) at all times hence the path followed by the
system in the configuration space is known.

An equivalent way of specifying the motion completely is to give the
coordinates q at two different times t1 and t2. Thus we are looking for
solution of Euler Lagrange equations.

q(t) = (q1(t), . . . , qN (t)) for t1 ≤ t ≤ t2 (2)

when their values at the initial time and final time

q(t1) = (q1(t1), . . . , qN (t1)), q(t2) = (q1(t2), . . . , qN (t2)) (3)

are known. This amounts to asking what path is followed in configuration
space, if we know the end points P1 and P2. Several paths in configuration
space with fixed end points are shown below.
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Fig. 1 Paths in configuration space with fixed
end points
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§1.2 Action functional

The answer given by the Hamilton’s principle also known as the “Action
Principle”, is stated below. We first define action functional Φ(C) or (SC).
Given a path C, we known the coordinates as function of time and also
the generalised velocities.at times between t1 and t2. Thus the Lagrangian
L(q, q̇, t), for a given path, is expressible as a function of time t. This function
of time when integrated over from t1 to t2 defines the action functional Φ(c)
for the path C: 1

Φ(C) =

∫ t2

t1

L(q, q̇, t)dt (4)

Note that for a given system, the right hand is a number which depends on
the path C, being different for different paths.

Now let C be a path which differs infinitesimally different from the
path C. The path C ′ starts from q′ at time t′1 and ends at q′2 at time
t′2. Let the values of coordinate be q(t) at times between t′1 and t′2. We
will say that C ′ is infinitesimally different from the path C if the quantities
defined by

∆t1 = t′1 − t; ∆t2 = t′2 − t2 (5)

∆q1 = q′1 − q1; ∆q2 = q′2 − q2 (6)

and
δq1(t) = q′1(t)− q(t), t1 ≤ t ≤ t2 (7)

are infinitesimal quantities. For our present purpose it is unimportant
weather we take (t1, t2) or (t

′

1, t
′

2) as the range of t in equation Eq.(4). The
difference in velocities for the two paths is given by

δq̇(1) =
d

dt
q′(t)−

d

dt
q(t) (8)

=
d

dt
(δq(t)) (9)

To formulate Hamilton’s principle we compute variation of action functional

1A functional is a number assigned to function taken from class of functions. Here the
functions are coordinates q(t) as function of time.
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when path is varied from C to C ′

Φ(C ′)− Φ(C) (10)

=

∫ t′
2

t′
1

L(q′1(t), q̇(t), t)dt−

∫ t2

t1

L(q(t), q̇(t), t)dt (11)

=

∫ t1

t′
1

L(q′(t), q̇′(t), t)dt +

∫ t2

t1

L(q′, q̇′, t)dt+

∫ t′
2

t2

L(q′, q̇, t)dt

−

∫ t2

t1

L(q, q̇, t)dt (12)

≈ (t1 − t′1)L(q(t1), q̇(t1), t) +

∫ t2

t1

{L(q′, q̇′, t)− L(q, q̇, t)}dt

+(t2 − t′2)L(q2, q̇2, t2) (13)

≈ −∆t1L(q(t1), q̇(t1), t1) + ∆t2L(q(t2), q̇(t2), t2

+

∫ t2

t1

{L(q′(t), q̇′(t), t)− L(q(t), q̇(t), t)}dt (14)

Now we use the fact that the paths c′ and c differ by infinitesimal amount
(Eqn(9))

q′(t) = q(t) + δq(t) (15)

substituting for q′(t) in the last term of (14) We get

∫ t2

t1

[L(q′, q̇′, t)− L(q, q̇, t)] dt (16)

=

∫ t2

t1

[

L
(

q + δq, q̇(t) +
d

dt
δq(t)

)

− L(q, q̇, t)

]

dt (17)

≈

∫ t2

t1

∑

k

( ∂L

∂qk
δqk +

∂L

∂q̇k
δq̇k

)

dt+ second order terms (18)

=

∫ t2

t1

∑

k

(
∂L

∂qk
δqk −

d

dt

( ∂L

∂q̇k

)

δqk

)

dt+
∑

k

∂L

∂q̇k
δqk

∣
∣
∣

t2

t1
(19)

Integration by parts has been done in the second term (20)

substituting (19) in (14) we get

Φ(C ′)−Φ(C) ≈

∫ t2

t1

(∑

k

∂L

∂qk
−

d

dt

( ∂L

∂q̇k

))

δqk+
[

L∆t+
∑

k

∂L

∂q̇k
δqk

]t2

t1
(21)

Hamilton’s Principle: We first consider special class of variations of
path which keep the end points fixed

∆t1 = ∆t2 = 0 (22)
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∆qk(t1) = 0; ∆qk(t2) = 0 (23)

For such variations we get

∆Φ(C) =

∫ t2

t1

∑

k

( ∂L

∂qk
−

d

dt

∂L

∂q̇k

)

δqk(t)dt (24)

It is now seen that the right the right hand side of(23) vanishes when
ever Euler Lagrange equations are satisfied i.e. q(t) is solution of EOM
and the variation of action is zero implies that Euler Lagrange equations
are satisfied. This is summarised into the following statement of action
principle,

Action Principle: Given the configurations q1, q2 at times t1 and t2, the
actual dynamical path C followed by a system is that for which the action
is stationary i.e. C is that path about which infinitesimal variations do not
produce any change in Φ

δΦ = Φ(C ′)− φ(C) = 0.

Note that the variation in path should not change the end points of the
path.

The Wees Action Principle This principle states that under general
variations, end points may not be fixed, the dynamical path followed by
the system is that the variations about it have only end point contribution

∆Φ(C) = ∆

∫ t2

t1

L(q, q̇, t)dt

=
∑

k

( ∂L

∂q̇k
δqk

)

−H∆t
∣
∣t2

t1

§2 Symmetries and conservation laws

The action principle is an elegant formulation of the laws of motion of a
dynamical system. This formalism also provides an important connection
between symmetries of Lagrangian and Conservation laws.One of the uses
of the Conservation laws is in integration of equations of motion. In areas of
physics, such as particle physics, where interactions were not known exper-
imentally observed connection laws and selection rules and corresponding
symmetry principles have been guiding principles towards building a theory.
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§2.1 Symmetries:

Consider an infinitesimal transformation

δqk ⇒ q′k = qk + δqk (25)

where δqk is a specific variation under consideration

δqk = εφk. (26)

We say that the Lagrangian is invariant under a transformations (1),(2) if

L(qk + εφk, q̇k + εφ̇k, t)− L(qk, q̇k, t) = o(ε2), (27)

i.e. L.H.S has no terms proportional to ε.
An infinitesimal transformation type (1) applied to a path C in con-

figuration space, gives rise to another path C ′ which is close to C. The
corresponding variation in action can be computed from earlier result and
is given by

δΦ(c) = ε

∫ t2

t1

∑

k

( ∂L

∂qk
−

d

dt

∂L

∂q̇k

)

φk(t) + ε
∑

k

pkφk(t)
∣
∣
∣

t2

t1
(28)

Eq.(27) implies ∆Φ(c) = 0. If C is the classical trajectory on which the
EOM are obeyed, the integrand in the first term vanishes and we get

F (t2) = F (t1) (29)

where

F (t) =
∑

pkφk(t) =
∑( ∂L

∂q̇k

)

φk(t) (30)

The equation (29) shows that F (t) is independent of time, when ever EOM
are obeyed, i.e. F (t) is a constant of motion.

§2.2 Symmetry under a continuous transformation

Many times the Lagrangian has a geometric transformation which is easy
to guess.Such a, finite, geometric transformation can be built up from in-
finitesimal transformations and the symmetry implies a Conservation Law
We shall say that Lagrangian is “quasi invariant” when, instead of (3), we
have

L(qk + εφk, q̇k + εφ̇k, t)− L(qk, q̇k, t) = ε
dΩ

dt
(31)

where Ω is a function of coordinates.In this case the L.H.S of (4) becomes
∑

k

∫ t2
t1

dΩ
dt

and we get

εΩ(t)
∣
∣
∣

t2

tt
= ε

∫ t2

t1

∑

k

( ∂L

∂qk
−

d

dt

∂L

∂q̇k

)

φkdt+ ε
∑

pkφk(t)
∣
∣
∣

t2

t1
(32)
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or (∑

k

pkφk(t)− Ω(t)
)∣
∣
∣

t2

t1
= 0 (33)

and the quantity

G(t) =
∑

pkφk − Ω (34)

is a constant of motion. Several generalisations of transformations are pos-
sible we refer reader to the book by Sudarshan and Mukunda.

Noether’s Theorem The result that has been obtained here is summa-
rized as follows: associated with every continuous symmetry transformation
of action, there exists a conserved quantity.

§3 Conservation of energy

We have seen that invariance of Lagrangian under translations,rotations
leads to conservation laws for momentum and angular momentum respec-
tively.What about conservation of energy? Is it also related to a symmetry
of the Lagrangian? The answer is Yes: If the Lagrangian does not depend
on time explicitly,there is a conservation law which is reduces to energy con-
servation for system with many particles. The conserved quantity will be
called as Hamiltonian which reduces energy (= KE+PE) for a mechanical
system,for large class of systems. For other system, qualifies to be identified
with energy. If Lagrangian does not contain t explicitly, we have ∂L

∂t
= 0

and hence
dL

dt
=

∑

k

∂L

∂qk
q̇k +

∑

k

∂L

∂q̇k
(q̈k) (35)

using Euler Lagrange EOM we get

dL

dt
=

∑

k

[ d

dt
(
∂L

∂q̇k
)q̇k +

∂L

∂q̇k
q̈k

]

=
d

dt

∑

k=1

∂L

∂q̇k
q̇k (36)

or
d

dt

(∑

k

∂L

∂q̇k
q̇k − L

)

= 0. (37)

Hence H defined by

H
def
≡

∑

k=1

∂L

∂q̇k
q̇k − L (38)

is a constant of motion. We can also write

H =

N∑

k=1

pk q̇k − L (39)
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where pk = ∂L
∂q̇k

is called the canonical momentum conjugate to the
coordinate q̇kand H will be called Hamiltonian of the system

In an alternate form of dynamics, the canonical momenta take over the
role played by velocities and Hamiltonian becomes central quantity which
governs the dynamics. The EOM can be written in an alternate form called
the Hamiltonian EOM.

Example: Let us consider a single particle moving in force field described
by potential energy V (~r).Then

L =
1

2
m~̇r2 − V (~r);~r = (x, y, z) (40)

the canonical momenta are

px =
∂L

∂ẋ
= mẋ; py =

∂L

∂ẏ
= mẏ; pz =

∂L

∂ż
= mż. (41)

and the Hamiltonian is given by

H =
∑

pkq̇k − L (42)

= (pxmẋ+ pymẏ + pzmż)− L (43)

= m(ẋ2 + ẏ2 + ż2)−
[1

2
m(ẋ2 + ẏ2 + ż2)− V (~r)

]

(44)

=
1

2
m(ẋ2 + ẏ2 + ż2) + V (~r) (45)

=
1

2
m~̇r 2 + V (~r) (46)

Thus the Canonical momenta, in this example,coincide with components of
momentum m~̇r and Hamiltonian is equal to the energy

However, it must be remarked that the canonical momenta are not always
equal to ‘ordinary’ momenta and Hamiltonian need not be a sum of kinetic
and potential energy. When the system is described by a velocity dependent
generalized potential Example will appear in problem sets.

§4 Noether’s theorem examples

For a system of N particles interacting via potential V (|~xα − ~xβ|) find sym-
metries and conservation laws

L(x, ẋ) =
1

2

∑

α

mα~̇x
2
α −

∑

α<β

V (| ~xα − ~xβ|) (47)
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§4.1 Translation symmetry

Consider the translation transformations

~xα → ~x ′

α = ~xα − ~a. (48)

Then we have
~̇x ′

α = ~̇xα, |~x ′

α − ~x ′

β| = |~xα − ~xβ|. (49)

Translations are a symmetry transformations of the Lagrangian (47). To see
this consider

L(~x ′, ~̇x ′) =
1

2

∑

α

mα~̇x
′2
α −

∑

α,β

V (|~x ′

α − ~x ′

β|) (50)

=
1

2

∑

α

mα~̇x
′2
α −

∑

α,β

V (|~xα − ~x ′

β|) (51)

= L(~x, ~̇x) (52)

translations is

∑ ∂L

∂q̇α
δqα =

∑

mα ~̇xα.~a = ~a.
∑

mα ~̇xα (53)

d

dt
~a.~p = 0 ⇒ ~a.

d

dt
~p = 0 (54)

since ~a is arbitrary we get

Therefore, Lagrangianisinvariant.Theconservedquantitycorrespondingto
d

dt
~p = 0.

(55)
where ~p =

∑

k mα~̇xα is the total momentum.
Thus we see that invariance under translations gives rise to conservation of
total momentum.

§4.2 Rotations

Let a set of axes K ′ be obtained from a set K by applying rotation about
X3 axis by an angle θ′ then

A Figure is to be Drawn

Fig. 2 Rotation

x ′

α1 = xα1 cos θ + xα2 sin θ (56)

x ′

α2 = −xα1 sin θ + xα2 cos θ (57)

x ′

α3 = xα3 (58)
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Note that

ẋ ′2
α1 + ẋ ′2

α2 + x′2α3 (59)

= (ẋα1 cos θ + ẋα2 sin θ)
2 + (−ẋα1 sin θ + ẋα2 cos θ)

2 + x 2
α3 (60)

= ẋ 2
α1 + ẋ 2

α2 + ẋ 2
α3 (61)

Similarly,
|~xα

′ − ~xβ
′|2 = |~xα − ~xβ|

2 ~̇x ′2
α = ~x2α (62)

This implies

L(x ′

α, ẋ
′

α) =
1

2

∑

mα~̇x
2
α + V (|xα − xβ|) = L(xα, ẋα) (63)

Therefore, the Lagrangian is invariant under rotations. Let us now compute
the variations for small θ:

δx ′

α1 = xα1 cos θ + xα2 sin θ − xα1 (64)
∼= θxα2 +O(θ2) (65)

δx ′

α2 = −xα1 sin θ + xα2 cos θ − xα2 ≃ −θxα1; (66)

δxα3 = 0 (67)

(68)

Therefore conserved quantity is

G =
∑

α,k

∂L

∂ẋα,k
δxαk (69)

=
∑

α

( ∂L

∂ẋα1
δxα1 +

∂L

∂ẋα2
δxα2 +

∂L

∂ẋα3
δxα3

)

(70)

= θ
∑

α

(

mαẋα1xα2 −mαẋα2xα1

)

(71)

= θ
∑

α

mα

(

ẋα1xα2 − ẋα2xα1

)

(72)

= θ
∑

α

(

ṗα1xα2 − ṗα2xα1

)

(73)

= θ
∑

α

(

~xα × ~pα

)

3
(74)

dG

dt
= 0 ⇒

d

dt

∑

α

(

~xα × ~pα

)

3
= 0 (75)

Therefore, the third component of angular momentum L3 =
∑

α

(

~xα×~pα

)

3
is a constant of motion.
Similarly, invariance under rotations about other axes leads to conservation
of other components of momentum.
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§4.3 Galilean Transformation

The Galilean transformation from a frame to another frame moving with
velocity ~v is given by a frame

~x ′ = ~x− ~vt

where ~v is independent of time. Therefore,

~̇x ′ = ~̇x− ~v

and
δ~x ′ = −vt; δ~̇x ′ = −v.

Since V (|~x ′

α − ~x ′

β|) = V (|~xα − ~xβ|), the change in Lagrangian is given by

δL = L(~x ′, ~̇x ′)− L(~x, ~̇x) (76)

=
1

2

∑

mα~̇x
′ 2
α −

1

2

∑

mα~̇x
2
α (77)

=
1

2
m(~̇x ′ 2 − ~v)2 −

1

2
m ~̇x 2

α (78)

= −mα ~̇xα~v +O(v2). (79)

Thus

L(~x ′, ~̇x ′) = L(~xα, ~̇xα)−
d

dt

∑

mα~xα.~v
︸ ︷︷ ︸

d

dt
Ω

(80)

and we have identified Ω as indicated above. Therefore, conserved quantity
is

G =
∑ ∂L

∂ẋαk
δxαk − Ω (81)

= −
∑

α

ẋαkvkt+
∑

mα~xα.~v (82)

= −~v
(∑

mαẋαkt−
∑

mα~xα

)

(83)

Therefore, the quantity

~v
(∑

mα~̇xαkt−
∑

mα~xα

)

is independent of time. To understand it a little, let us introduce C.M
coordinate ~X then we get

~v
(

~̇Xt− ~X
)

= constant
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or
~X = ~̇Xt+ constant

Therefore ~X is a linear function of time. Thus the conservation law associ-
ated with invariance of Galilean transformations is that the centre of mass
of the system moves with a constant velocity ~̇X.
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