qm-lec-03005

§2.3 Hermitian Operators

Definition 10 An operator A is hermitian if $A^{\dagger} = A$.

Definition 11 A linear operator U is called unitary if $U^{\dagger} = U^{-1}$. In case of a finite dimensional vector space, it is equivalent to demanding

$$UU^{\dagger} = I(orU^{\dagger}U = I).$$

Theorem 8 (When is an operator hermitian?) Each of the following two statements give condition for hermiticity of an operator.

- 1. An operator T is hermitian if and only if (Tg, f) = (g, Tf) holds for all $f, g \in \mathcal{V}$.
- 2. In a finite dimensional vector space an operator T is self adjoint if and only if (f, Tf) is real $\forall f \in \mathcal{V}$.

Proof of (1): Let T be a hermitian operator. Using the definition of adjoint we have

$$(g, Tf) = (T^{\dagger}g, f)$$

or

$$(g, Tf) = (Tg, f)$$
 $(:: T = T^{\dagger})$

Let (g, Tf) = (Tg, f) for all f and g in the vector space. Then we get

$$(g, Tf) = (Tg, f)$$
 (given) (41)

$$(g, Tf) = (g, T^{\dagger}f)$$
 (Use def of T^{\dagger}) (42)

$$(g, (T - T^{\dagger})f) = 0 \tag{43}$$

holds $\forall g$ and f. Select $g = (T - T^{\dagger})f$. This gives $||(T - T^{\dagger})f|| = 0$. Therefore,

$$(T - T^{\dagger})f = 0 \qquad \forall f \in \mathcal{V}.$$
 (44)

Hence $T = T^{\dagger}$

Proof of (2): Let (f, Tf) be real. Then

$$(f, Tf) = (f, Tf)^* \qquad \text{given} \tag{45}$$

$$= (Tf, f)$$
 (property of inner product) (46)

$$= (f, T^{\dagger}f) \qquad (\text{ def of adjoint }) \tag{47}$$

Thus $(f, Tf) = (f, T^{\dagger}f)$ holds $\forall f \in \mathcal{V}$. This implies $(f, (T - T^{\dagger})f) = 0$, hence $T = T^{\dagger}$. Therefore, T is hermitian.

Theorem 9 If X is any operator we may write, X = A + iB, where A and B are hermitian operators.

qm-lec-03005

The proof is easy. We write $A = (X + X^{\dagger})/2$; $B = (X - X^{\dagger})/2i$ It is straight forward to verify that A and B are hermitian and that X = A + B.

Theorem 10 (Eigen-values and Eigen-vectors of Hermitian Operators) Two important properties of hermitian operators are given below.

- 1. The eigen-values of a hermitian operators are real.
- 2. The eigen-vectors of a hermitian operator corresponding to two distinct eigen-values are orthogonal.

Proof of 1: Let λ be an eigen-value and f be eigen-vector of T with $Tf = \lambda f$. Taking g = f in (f, Tg) = (Tf, g) we get

$$(Tf, f) = (f, Tf) \tag{48}$$

$$(\lambda f, f) = (f, \lambda f) \tag{49}$$

$$\therefore \quad (\lambda^* - \lambda)(f, f) = 0 \tag{50}$$

As $f \neq 0, (f, f) \neq 0$ and hence we must have $\lambda^* - \lambda = 0$ Therefore the eigen-values of a hermitian operator are real.

Proof of 2: To prove that two eigen-vectors corresponding to a different eigen-values are orthogonal. Let $Tf = \lambda f$ and $Tg = \mu g$. and T be a hermitian operator $T^{\dagger} = T$ and $\lambda \neq \mu$. Then proceeding as in proof of (1)

$$(f, Tg) = (Tf, g)$$
 (Since $T^{\dagger} = T$)

We have

$$(f, \mu g) = (\lambda f, g)$$

or

$$\mu(f,q) = \lambda^*(f,q) = \lambda(f,q)$$

because the eigenvalues λ, μ are real. For $\lambda \neq \mu$ the above equation implies that (f, g) = 0. Hence f and g are orthogonal.

Definition 12 An operator is called **projection operator** if $P^2 = P$.

Definition 13 An operator is called **positive** if $(f, Af) \ge \forall f \in \mathcal{V}$.