qm-lec-03002

§1.2 Orthogonality and Gram Schmidt Procedure

Definition 3 We say that two vectors f and g are orthogonal if (f,g) = 0

LEMMA: If $g \neq 0$ then the vector

$$x = f - \frac{(g, f)}{(g, g)}g$$

is orthogonal to g.

Proof:

Consider

$$(g,x) = (g,f - \frac{(g,f)}{(g,g)}g) = (g,f) - \frac{(g,f)}{(g,g)}(g,g)$$
(10)

= (g,f) - (g,f) = 0 (11)

Therefore, g is orthogonal to $x = f - \frac{(g, f)}{(g, g)}g$.

Definition 4 Two vectors f and g are **orthogonal** if (f,g) = 0.

Definition 5 A set of vectors \mathfrak{X} is an **orthogonal set** if \forall pair $x, y \in \mathfrak{X}$, we have (x, y) = 0.

Definition 6 A set of vectors X is called **orthonormal set** if

- (a) for every pair $x, y \in X$ we have (x, y) = 0 and
- (b) for every $x \in \mathcal{X}$ we have ||x|| = 1.

Definition 7 A set $\{x_1, x_2, ..., x_r\}$ is an orthonormal set iff $(x_i, x_j) = \delta_{ij}$.

Definition 8 An orthonormal set is called a **complete orthonormal set** if it is not contained in any larger orthonormal set.

Theorem 1 An orthogonal set $\mathfrak{X} = \{x_1, x_2, ... x_r\}$ of non-zero vectors is linearly independent.

Proof: Consider

$$\alpha_1 x_1 + \alpha_2 x_2 + \dots + \alpha_r x_r = 0 \tag{12}$$

Taking scalar product with x_1 gives zero for all terms except the first one. Thus

$$\alpha_1(x_1, x_1) = 0 \Rightarrow \alpha_1 = 0 \tag{13}$$

$$(\because x_1 \neq 0 \Rightarrow (x_1, x_1) \neq 0). \tag{14}$$

gm-lec-03002

Remark : Earlier we have seen that the vector $h = f - \lambda g$ is orthogonal to the vector g if λ is taken to be (g, f)/(g, g). The following theorem generalizes this result to orthogonal sets.

Theorem 2 If $U = u_1, u_2, ..., u_n$ is any finite orthogonal set containing nonzero vectors of an inner product space and if $\lambda_k = (u_k, x)/(u_k, u_k)$, then the vector h defined by

$$h = f - \lambda_1 u_1 - \lambda_2 u_2 - \dots - \lambda_k u_k$$

is orthogonal to every element u_k in the set U

The result follows easily by taking the scalar products (h, u_k) for different k.

Grahm Schmidt Orthogonalization Procedure

Let $\mathcal{X} = \{x_1, x_2, \dots, x_r\}$ be a linearly independent set. Then one can construct a set of vectors $\mathcal{E} = \{e_1, e_2, \dots e_r\}$ such that the vectors e_k are linear combinations of the vectors in \mathcal{X} and the set \mathcal{E} is an orthonormal set.

Proof: Define

$$u_1 = x_1,$$
 $e_1 = u_1/\|u_1\|$
 $u_2 = x_2 - (e_1, x_2)e_2,$ $e_2 = u_2/\|u_2\|$
 $u_3 = x_3 - (e_1, x_3)e_3 - (e_2, x_3)e_2,$ $e_3 = u_3/\|u_3\|$
 $u_r = x_r - \sum_{k=1}^{r-1} (e_k, x_r)e_k,$ $e_r = u_r/\|u_r\|$

It is easily verified that $\{e_1, e_2, ...\}$ is an o.n. set.

Bessel's Inequality

If $\mathcal{U} = u_1, u_2, ..., u_r$ is any finite orthonormal set in an inner product space then for all $x \in \mathcal{V}$ we have

$$\sum_{k} |(u_k, x)|^2 \le ||x||^2 \qquad (Bessel Inequality)$$
 (15)

Proof: For every vector y, we have $(y,y) \ge 0$. Therefore, taking y to be

$$y = x - \sum_{k} \lambda_k u_k$$
 with $u_k = (u_k, x)$.

we get

$$(y,y) = (x - \sum_{k} \lambda_k u_k, x - \sum_{j} \lambda_j u_j)$$
(16)

$$= (x,x) - \sum_{k} \lambda_k^*(u_k,x) - \sum_{j} \lambda_j(x,u_j) + \sum_{j} \sum_{k} \lambda_k^* \lambda_j(u_j,u_k)$$
 (17)

$$= (x,x) - \sum_{k} \lambda_k^*(u_k,x) - \sum_{j} \lambda_j(x,u_j) + \sum_{k} \lambda_k^* \lambda_k$$
(18)

qm-lec-03002 6

One of two the summations in the last term has been done using $(u_j, u_k) = \delta_{jk}$. Substituting $\lambda_j = (u_j, x)$ we get

$$(y,y) = (x,x) - \sum_{k} (x,u_k)(u_k,x) - \sum_{k} (u_j,x)(x,u_j) + \sum_{k} (x,u_j)(u_j,x)$$
(19)

$$= (x,x) - \sum_{k} (x,u_k)(u_k,x)$$
 (20)

$$(y,y) = (x,x) - \sum_{k} (x,u_k)(u_k,x) - \sum_{k} (u_j,x)(x,u_j) + \sum_{k} (x,u_j)(u_j,x)$$
(19)
$$= (x,x) - \sum_{k} (x,u_k)(u_k,x)$$
(20)
$$= (x,x) - \sum_{k} |(u_k,x)|^2$$
(21)

Using $(y, y) \ge 0$ we get the desired Bessel's inequality.

$$\sum_{k} |(u_k, x)|^2 \le ||x||^2 \tag{22}$$