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§1 Introduction

We recall a few facts from previous lectures on vector spaces. Every finite dimensional vector V
(dimension = N) is isomorphic to CN . This is demonstrated by selecting a basis ξ = {e1, e2, · · · , eN}
in the vector space and writing arbitrary vector x as a linear combination of elements in ξ. The
coefficients appearing in the linear combination can be assembled in form of a N− component
column vector, to be denoted by x

¯
.

The action of a linear operator on vectors in the vector space is determined once we know the
action on the elements of any basis. Thus given a linear operator T, knowledge of vectors in the set
T ξ = {Te1, T e2, · · · , T eN}, by linearity, determines action of T on an arbitrary vector. The vectors
in T ξ in turn, like every other vector in V , are completely specified by their expansion coefficients in
the basis elements ξ. The action of the linear operator T on an arbitrary vector x can be computed
from the knowledge of the coefficients which appear when the vectors in T ξ are expanded in terms
of the vectors in ξ. These coefficients can be arranged conveniently as a matrix T

¯
. Thus Given a

basis ξ, we represent
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(a) vectors x in V −→ N component columns x
¯

(b) linear operators T on V −→ N ∗N matrices T
¯

If a new basis u = {u1, u2, · · · , } u selected we will have the representatives of the vectors and
operators will change and we will have

(a) vectors x in V −→ N component columns x
¯

(b) linear operators T on V −→ N ∗N matrices T
¯

If S is a linear operator such that Sek = uk, k = 1, 2, · · · .N. Then the representatives of vectors
and operators w.r.t. the two basis set are related by

x
¯
= S

¯
−1 x

¯
; and T

¯
= S

¯
−1 T

¯
S
¯

Let us note in passing that the columns representing the elements of a basis are given by

e
¯1

=









1
0
...
0









; e
¯2

=









0
1
...
0









; e
¯N

=









0
0
...
1









The above discussion applies to any finite dimensional vector space. The above discussion applies
to CN with V replaced by CN everywhere because CN can be regarded as a vector space in its own
right. Vectors in CN are N− component column vectors and linear operators in CN are N ∗ N
matrices. In this context I would like to remark that, although two different matrices are different
linear operators in CN , it is sometimes useful to regard similar matrices as representing the same
operator w.r.t two different basis sets.

The Vector Space CN : The correspondence between the notation for abstract space used so far
and CN is as follows.

Vector in CN : The vectors in CN are N−component column with complex entries. Thus if x
and y are vectors in CN then

x =









ξ1
ξ2
· · ·
ξN









; y =









nη1
η2
· · ·
ηN








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Scalar Product: The scalar product of two vectors x and y in CN is defined as

(x, y) −→ x† y =
[

ξ1
∗, ξ2

∗, · · · , ξN ∗
]









η1
η2
· · ·
ηN









= ξ∗
1
η1 + ξ∗

2
η2 + · · ·+ ξ∗NηN

=
∑

k

ξ∗kηk

Linear Operators: If T is an N ∗ N complex matrix then the matrix multiplication, Tx, gives
another vector in CN and it defines a linear operator. In fact the set of all N ∗ N matrices is
isomorphic to the set of linear operators on CN . Many properties of linear operators have been
studied for linear operators on finite dimensional vector spaces. They

are all applicable to the N ∗N complex matrices. However, a study of the properties of complex
matrices is useful in its own right. This is what we plan to do in the next few lectures. When
ever needed, we shall make use of results from the previous lectures on linear operators. In the
following we assume the matrices are complex square N− dimensional. [T ]ij will be used to denote
an element of a matrix T , appearing in the ith row and jth column.

Hermitian Adjoint: The hermitian adjoint of a linear operator, denoted by T †, satisfies the
relation

(y, Tx) = (T †y, x) for all vectorsx and y

This relation can be taken as the definition of the adjoint operator T † in (finite dimensional) vector
spaces. Given an N ∗N matrix how do we define its hermitian adjoint so that it is consistent with
the above definition ? We shall now obtain a relation between [T †]ij and [T ]ij using the above
relation. We compute

(y, Tx) = y†(Tx) =
[

η∗
1
, η∗

2
, · · · , η∗N

]

[T ]









ξ1
ξ2
· · ·
ξN









=
∑

η∗i [T ]ijξj
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and

= (T †y, x) = (x, T †y)∗

= complex conjugate of
[

ξ1
∗, ξ2

∗, · · · , ξN ∗
]

[T †]









η1
η2
· · ·
ηN









=
[
∑

ξ1
∗[T †]ijηj

]∗
=

[
∑

ξ1
∗[T †]ijηj

]

=
∑

η∗
1
[T †]∗ijξj =

∑

η∗j [T
†]∗jiξi

The requirement (y, Tx) = (T †y, x) should hold for arbitrary vectors. Hence the adjoint of a matrix
T should have its elements [T †]ij related to the matrix elements of T by [T †]∗ij = [T ]ij which is
equivalent to

[T †]km = [T ]∗mk

Basic Definitions:

1. Given a matrix A, its transpose is the matrix obtained by interchanging rows and columns.

The transpose of a matrix A will be denoted by AT . We thus have [AT ]ij = [A]ji.

2. The hermitian adjoint of matrix A, denoted by A†, is obtained by taking the complex conjugate

of the transpose of the matrix A. Thus A† = (AT )∗ and [A†]ij = [A]∗ji

3. A matrix X is symmetric if XT = X, or, [X ]ij = [X ]ji

4. A matrix X is anti-symmetric if XT = −X or, [X ]ij = −[X ]ji

5. A matrix X is hermitian if X† = X, or, [X ]ij = −[X ]∗ji

6. A matrix X is anti-hermitain if X† = −X, or [X ]ij = −[X ]∗ji

7. A matrix X is orthogonal if XTX = I, or, XT = X−1

8. A matrix X is unitary if X†X = I or ,X† = X−1

9. A matrix X is normal if X commutes with X† or ,X†X −X† = 0

10. A matrix X is nilpotent if Xr = 0 for some r.

11. A matrix X is called upper (lower) triangular matrix if all its elements below (above) the main
diagonal are zero.

12. A matrix X is invertible (or non-singular) if detX 6= 0
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13. A matrix X is A and B are called similar if there exists an invertible matrix X such that
A = XBX−1

Determinants of Unitary and Orthogonal Matrices: If U is a unitary operator then detU =
exp(iα) where α is a real number.
Proof: Taking determinant of U U † = I we get

det(U U †) = 1 ⇒ det U det(U)† = 1 ⇒ det(UTx) = 1

⇒ detU(detU)∗ = 1 ⇒ det U = exp(iα), α real

Then an orthogonal matrix is has determinant = ±1 follows in a similar fashion from 00T = 1

The Trace: The trace of a matrix is defined as the sum of its diagonal elements

Trace(A) =
N
∑

k=1

[A]kk

Tr(A) or tr(A) are used shorthand notation for the trace of a matrix. The trace of product of
(finite dimensional) matrices satisfies the cyclic property:

tr(AB) = tr(BA);

tr(A1A2A3 · · ·Ar) = tr(ArA1A2 · · ·Ar−1).

We shall give the proof of the cyclic property for product of two matrices.

tr(AB) =
∑

k

(AB)kk =
∑

k

∑

m

(AkmBmk) =
∑

m

∑

k

(AkmBmk)

where we have interchanged the two summations in the last step. Thus we get

tr(AB) =
∑

m

(BA)mm = tr(BA)

For a product of more than two matrices the result follows from tr(AB) = tr(BA) and identifying
A −→ A1 and B −→ A2A3 · · · , Ar.
Since the proof makes use of interchange of two summations, the cyclic property is not valid for
operators in infinite dimensional vector spaces and for infinite dimensional matrices. Thus the
commutation relation for

x̂ p̂− p̂ x̂ = i

two operators x̂ and p̂ can not be satisfied in a finite dimensional vector space.
The cyclic property of the trace impels that the trace of two similar matrices is equal. For let A
and B be two similar matrices. Then there exists a non-singular matrix X such that A = XBX−1

tr(A) = tr(XBX−1) = tr(X−1XA) = tr(B)

5



§2 Computation of Eigenvalues and Eigenvectors

Eigenvalues and Eigenvectors: We say that λ is an eigenvalue of a matrix A, (N×N), if there
exists a non zero vector u such that Au = λu. The vector u is called eigenvector of A corresponding
to the eigenvalue λ.
Note that if u is an eigenvector of matrix all scalar multiple, βu, are also eigenvectors with the same
eigenvalue.
Let ν be the number of linearly independent eigenvectors u corresponding to a given eigenvalue λ.
If ν = 1 we say that the eigenvalue is non degenerate. If ν > 1 the eigenvalue λ is degenerate and
then ν to called the degeneracy of the eigenvalue.

If α be a degenerate eigenvalue of A with degeneracy ν. Let the corresponding eigenvectors be
u1, u2, · · · ., uν . Then by definition we have

Au1 = αu1; Au2 = αu2; · · · ; Auν = αuν;

If we form a linear combination

w = ξ1u1 + ξ2u2 + · · ·+ ξνuν

where ξ′s are arbitrary complex numbers, then vector w is also an eigenvector of A with the same
eigenvalue α,Aw = αw.

The set of all eigenvectors corresponding to a fixed eigenvalue of a matrix is a subspace of CN .
The dimension of this subspace is precisely equal to the degeneracy of the eigenvalue.

To find eigenvalue and eigenvectors we start form the equation Au = λu in the form

(A− λI)u = 0

We shall now discuss example of computation of eigenvalues and eigenvectors for four real matrices.

EXAMPLE − 1
We shall at first compute the eigenvalues and eigenvectors of the matrix A matrix A where

A =





3 −5 −4
−5 −6 −5
−4 −5 3





The eigenvalues are given by det(A− λI) = 0

det





3− λ −5 −4
−5 −6− λ −5
−4 −5 3− λ



 = 0
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Expanding the determinant gives the characteristic equation

λ3 − 93λ+ 308 = 0

Factorizing the left hand side we get

(λ− 4)(λ− 7)(λ+ 11) = 0

Thus the characteristic roots are λ = 4, 7,−11
To find the eigenvectors we start with (A− λI)x = 0, Let x be given by

x =





α
β
γ





To determine α, β, γ we use (A− λI)x = 0. This equation has the form




3− λ −5 −4
−5 −6 − λ −5
−4 −5 3− λ









α
β
γ



 = 0

Eigenvectors for λ = 4 : The equation for the eigenvectors becomes




−1 −5 −4
−5 −10 −5
−4 −5 −1









α
β
γ



 = 0

or
− α− 5β − 4γ = 0 (1)

− 5α− 10β − 5γ = 0 (2)

− 4α− 5β − γ = 0 (3)

Subtracting (2) from (1))gives

3α− 3γ = 0; ∴ α = γ

Subtracting α = γ in (1))gives

−5γ − 5β = 0; ∴ β = −γ

Thus the eigenvector becomes x = γ





1
−1
1



, where γ is arbitrary. Sometimes it is fixed by

demanding x† x = 1. We shall take the unknown γ to be equal to 1.
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Eigenvectors for λ = 7 : The equation determining the eigenvector takes the form





−4 −5 −4
−5 −13 −5
−4 −5 −4









α
β
γ



 = 0

− 4α− 5β − 4γ = 0 (4)

− 5α− 13β − 5γ = 0 (5)

− 4α− 5β − 4γ = 0 (6)

4 ∗ ((5))− 5 ∗ ((9)) = 0 ⇒ β = 0. Substituting β = 0 in ((4)) gives α = −γ.

Thus we obtain x =





−γ
0
γ



 which, on taking γ = −1, becomes





1
0
−1





Eigenvectors for λ = −11 : The eigenvector x is determined from the equation





14 −5 −4
−5 5 −5
−4 −5 14









α
β
γ



 = 0

− 14α− 5β − 4γ = 0 (7)

− 5α + 5β − 5γ = 0 (8)

− 4α− 5β + 14γ = 0 (9)

The equation (8) is α + β + γ = 0 and (7)-(9) implies α = γ, hence β = 2γ Thus we obtain

x =





γ
2γ
γ



 which, on taking γ = −1, becomes





1
2
1



 Thus the final results for the eigenvalues

and the eigenvectors are

γ = 4,





1
−1
1



 ; λ = 7,





1
0
−1



 ; λ = −11,





1
2
1





EXAMPLE− 2

As a second example we take the matrix

A =





5 −6 −6
−1 4 2
3 −6 −4




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The eigenvalues are given by det(A− λI) = 0.





5− λ −6 −6
−1 4− λ 2
3 −6 −4 − λ



 = 0

Expanding we get the characteristic polynomial to be λ3 − 5λ+ 8λ− 4 which can be factorized to
become (λ− 2)2(λ− 1) = 0. Thus the characteristic roots are λ = 1, and 2 (repeated twice).

To find the eigenvectors we again start with (A− λI)x = 0.





5− λ −6 −6
−1 4− λ 2
3 −6 −4− λ









α
β
γ



 = 0

Eigenvectors for λ = 1 : The equation for the eigenvector becomes





4 −6 −6
−1 3 2
3 −6 −5









α
β
γ



 = 0

which is equivalent to the following equations

4α− 6β − 6γ = 0 (10)

− α + 3β + 2γ = 0 (11)

3α− 6β − 5γ = 0 (12)

(10)-(12) implies γ = α. This together with (11) gives γ = −3β. Taking β = 1

we get the eigenvector to be





3
−1
3



 .

Eigenvectors for λ = 2




3 −6 −6
−1 2 2
3 −6 −6









α
β
γ



 = 0

This is equivalent to the following three equations

3α− 6β − 6γ = 0 (13)

− α + 2β + 2γ = 0 (14)
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3α− 6β − 6γ = 0 (15)

It is seen that the three equations are not independent, and that there is only one independent
relation between α, β, γ which we take to be α = 2β + 2γ. With β and γ remaining arbitrary the
eigenvector takes the form

x =





2β + 2γ
β
γ



 (16)

There are two ways of proceeding.

1. We write the eigenvector as

x =





2β + 2γ
β
γ



 = β





2
1
0



+ γ





2
0
1





This clearly shows that an eigenvector for the case λ = 2 is a linear combination of two linearly
independent vectors





2
1
0



 and





2
0
1





2. We can take two sets of values for β and γ in such a way as to obtain two linearly independent
eigenvectors.

Thus can takes,β = 1, γ = 0 giving





2
1
0



 and next we select β = 0, γ = 1 giving





2
0
1





EXAMPLE− 3 Our next example is

A =





3 1 −1
2 2 −1
2 2 0





The eigenvalues are determined from det(A− λI) = 0 or from





3− λ 1 −1
2 2− λ −1
2 2 −λ



 = 0

The characteristic polynomial is found to be

λ3 − 5λ2 + 8λ− 4 = 0
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or
(λ− 1)(λ− 2)2 = 0

Thus the eigenvalues are λ = 1, 2. The root λ = 2 is a double root. The corresponding eigenvectors
are obtained by solving for α, β, and γ from





3− λ 1 −1
2 2− λ −1
2 2 −λ









α
β
γ



 = 0

Eigenvectors for λ = 1




2 1 −1
2 1 −1
2 2 −1









α
β
γ



 = 0

This is equivalent to the three equations

2α + β − γ = 0

2α + β − γ = 0

2α + 2β − γ = 0

These equations are solved to giveγ = 2α and β = 0. Taking α = 1, we find the eigenvector for

λ = 1 to be





1
0
2



 .

Eigenvectors for λ = 2.




1 1 −1
2 0 −1
2 2 −2









α
β
γ



 = 0

In this case the equations which determine α, β and γ are

α + β − γ = 0 (17)

2α− γ = 0 (18)

2α+ 2β − 2γ = 0 (19)

Subtracting (17) and (19) from (18)implies, respectively, α = β and γ = 2β.

Therefore the eigenvector is found to be





1
1
2



 .
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EXAMPLE− 4 In this example, the matrix has all the three eigenvalues are equal and there
are two linearly independent eigenvectors.

A =





2 1 2
1 2 −2
−1 1 5





The eigenvalues are given by det(A− λI) = 0 which takes the form




2− λ 1 2
1 2− λ −2
−1 1 5− λ



 = 0

To find the eigenvectors we start with (A− λI)x = 0. This equation for λ = 3 is




−1 1 2
1 −1 −2
−1 1 2









α
β
γ



 = 0

These equations give only one independent relation

α = β + 2γ (20)

between α, β, γ. Thus we get x =





β + 2γ
β
γ



. This answer can be written as

x = β





1
1
0



+ γ





2
0
1



 (21)

We see that the there are two independent eigenvectors

x1 =





1
1
0



 ; x2 =





2
0
1



 . (22)

In this example, the characteristic equation has a root, 3, repeated three times and that there are
two eigenvectors.

EXAMPLE− 5

In the last example we will find that all the three roots of the characteristic polynomial are degen-
erate and that there is only one linearly independent eigenvector.

A =





2 1 0
0 2 1
0 0 2




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The eigenvalues are given by det(A− λI) = 0 which takes the form

det





2− λ 1 0
0 2− λ 1
0 0 2− λ



 = 0

Expanding the determinant gives (λ − 2)3 = 0. In this case there is only one root, λ = 2, of the
characteristic polynomial and the root is repeated thrice.

The eigenvector is obtained by solving





2− λ 1 0
0 2− λ 1
0 0 2− λ









α
β
γ



 = 0 (23)

Substituting λ = 2, gives




0 1 0
0 0 1
0 0 0









α
β
γ



 = 0 (24)

which gives β = γ = 0 and α is not determined. Taking α = 1 we have the eigenvector given by

λ = 2,





1
0
0



 (25)

The characteristic equation has a root λ = 2 repeated three times and there is only one eigenvector.

§3 Properties of Eigenvalues And Eigenvectors

In this lecture we discuss with some simple properties of eigenvalues and eigenvectors.

Properties of eigenvalues and eigenvectors

1. If two matrices A and B are similar and λ is an eigenvalue of A then it is also an eigenvalue
of the matrix B.

2. A matrix T is not invertible if λ = 0 is an eigenvalue of T .

3. If A is a matrix, with detA 6= 0 and if λ is an eigenvalue of A, then λ−1 is an eigenvalue of
A−1
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4. Let A be a matrix and letλ be its eigenvalue. Let P (A) be a polynomial in A. Then P (λ) is
an eigenvalues of P (A)

5. Let A be a triangular matrix. The eigenvalues of A coincide with the elements on the main
diagonal.

6. If D is a diagonal matrix, eigenvalues of D are its diagonal elements.

7. Product of all eigenvalues is equal to the determinant of the matrix and the sum of all
eigenvalues is equal to the trace of the matrix. If the characteristic polynomial for the matrix
has root repeated m times, the corresponding eigenvalue must appear m times in the product
or the sum.

8. For a hermitian matrix we have the following results.

(a) The eigenvalues are real.

(b) The eigenvectors corresponding to different eigenvalues are orthogonal.

9. For a unitary matrix we have the following results.

(a) The eigenvalues are pure phase, i.e., of the form exp(iα) where α is a real number.

(b) The eigenvectors corresponding to different eigenvalues are orthogonal.

10. The eigenvectors of a matrix corresponding to distinct eigenvalues are linearly independent.

Proofs:

First Proof:

1. A and B are two similar matrices. Therefore there exists a non-singular matrix X such that

A = XBX−1

The eigenvalues of the matrix are the roots of the characteristic polynomial det(A − λI).
Consider

det(A− I) = det(XBX−1 − λI)

= det{X(B − λI)X−1}
= detX. det(B − λI). detX−1

= det(B − λI)

The characteristic polynomials for the matrix A and B therefore equal. Hence the two matrices
have set of eigenvalues.
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Second Proof: Let u be an eigenvector of A with eigenvalue λ. Then Au = λu. Substituting
for A from A = XBX−1 we get

XBX−1u = λu, or BX−1u = λ−1X−1u

If we define v = X−1u we get
Bv = λv.

Therefore λ is an eigenvalue B with eigenvector v ≡ (X−1u).

2. A matrix T is singular (not invertible) if and only if det T = 0. For a singular matrix T we,
therefore, see that the characteristic polynomial p(λ) = det(T −λI) vanishes for λ = 0. Hence
0 is an eigenvalue of the matrix.

3. Let A be a matrix which is invertible. Then detA 6= 0 and λ = 0 is not an eigenvalue. Hence
if λ0 is an eigenvalue of A, then λ 6= 0 and the characteristic polynomial, p(λ) = det(A− λI),
for A will vanish.

det(A− λ0I) = 0 ⇔ det{A(I − λ0A
−1)} = 0

⇔ detA det λ0{(1/λ0)I −A−1} = 0

⇔ det{(1/λ0)I − A−1} = 0

⇔ det{A−1 − (1/λ0)I} = 0

The last result means that det(A−1 − λI). which is the characteristic polynomial for A−1,
vanishes when λ = 1/λ0 showing that 1λ0 is an eigenvalue of A−1.

4. Let us assume that
p(A) = a0 + a1A+ a2A

2 + · · · .+ anA
n

Let λ be an eigenvalue of the matrix A and the corresponding eigenvector be u. So that

Au = λu,

A2u = A(λu) = λAu = λ2u

A3u = A(λ2u) = λ2Au = λ3u

· · · · · · · · ·
Anu = λnu

(a0 + a1A+ a2A
2 + · · ·+ anA

n)u = (a0 + a1λ+ a2λ
2 + · · ·+ anλ

n)u

(or)

P (A)u = P (λ)u

Thus it has been proved that the vector u is an eigenvector of the matrix P (A) and that P (λ)
is an eigenvalue of the matrix P (A).
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5. Let T be a triangular matrix, upper triangular for definiteness.

A =









a11 a12 · · · a1n
0 a22 · · · a2n
0 0 · · · · · ·
0 0 0 ann









The eigenvalues are given by

det(A− λI) = det









a11 − λ a12 · · · a1n
0 a22 − λ · · · a2n
0 0 · · · · · ·
0 0 0 ann − λ









= 0

Expanding along the first coloum we get

det(A− λI) = (a11 − λ)





a22 − λ a23 · · · a2N
0 a33 − λ · · · a3N
0 0 0 aNN − λ





= (a11 − λ)(a22 − λ) · · · | · · · |
= (a11 − λ)(a22 − λ) · · · (ann − λ)

Therefore, the eigenvalues, determined from det(A−λI) = 0, are the elements a11, a22, · · · , ann
on the main diagonal.

6. This is a special case of the result [5].

7. The proof is obtained by expanding det(A− λI) = 0

8. The result was proved earlier for hermitian operators and is applicable to the hermitian
matrices which are hermitian linear operators on complex vector spaces.

9. As the unitary matrices are also unitary operators on CN the result on the eigenvalues and
the eigenvectors follows from the corresponding result for unitary operators on any complex
inner product space.

10. Let u1, u2, · · · , ur be the eigenvectors of a matrix A with eigenvalues λ1, λ2, · · · , λr. Let the
eigenvalues λ1, λ2, · · · , λr be all distinct. We have to prove that uk, k = 1, · · ·n are linearly
independent. We start with

α1u1 + α2u2 + α3u3 + · · ·+ αrur = 0 (26)

We define P1(A) = (A − λ2) · · · (A− λr) = Πr
16=1

(λ1 − λk). Recall that from result [4] above,
Au = λu implies P (A)u = P (λ)u where P is a polynomial. Therefore it follows.
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Lecture - 3: Properties of Eigenvalues and Eigenvectors

P1(A)u1 = P1(λ1)u1 = (λ1 − λ2)(λ1 − λ3) · · · (λ1 − λn)u1 = P (λ1)u1

P1(A)u2 = P1(λ2)u2 = (λ2 − λ2)(λ2 − λ3) · · · (λ2 − λn)u2 = 0

P1(A)u3 = P1(λ3)u3 = (λ3 − λ2)(λ3 − λ3) · · · (λ3 − λn)u3 = 0

· · · · · · · · ·
P1(A)ur = P1(λr)ur = (λr − λ2)(λr − λ3) · · · (λr − λr)ur = 0

Thus we have the result that P1(A)uj = 0 for j = 2, · · · , r. Multiplying (20) with P1(A) gives

α1P1(λ1)u1 = 0

because all λi 6= λj.P1(λ1) is not zero hence α1 = 0. Similarly we can prove that α = · · · =
αn = 0 by multiplying (20) successively by Pj(A) for j = 2 · · ·n, where Pj(A) = Πn

16=j(A−λk).
This proves that the eigenvectors of a matrix with distinct eigenvalue are linearly independent.
The above result [10] implies that if for an N ∗N matrix the characteristic polynomial has N
distinct roots then the matrix has N-linearly independent eigenvectors. We shall give some
other sufficient conditions for an N ∗N matrix to have N linearly independent eigenvectors.

§4 Diagonalization

In a finite dimensional vector space, every operator can be represented by a matrix. The
values of the elements of the matrix representing an operator will obviously depend on the
choice of basis. Let A be an operator in an N dimensional complex vector space. Let A be
such that the eigenvectors of A form a basis. Let us denote the eigenvectors by u1, u2, · · · , uN .
Then

Tu1 = λ1u1 = λ1u1 + 0.u2 + 0.u3 + · · ·+ 0.uN

Tu2 = λ2u2 = 0.u1 + λu2 + 0.u3 + · · ·+ 0.uN

Tu3 = λ3u3 = 0.u1 + 0.u2 + λu3 + · · ·+ 0.uN

· · · · · · · · · · · ·
TuN = λNuN = 0.u1 + 0.u2 + 0.u3 + · · ·+ λNuN

We can now construct the matrix representing the operator T w.r.t. the basis {u1, u2, · · · , uN}.
This is given by the transpose of the matrix of coefficients in the above equations. Thus the
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operator T is represented by a diagonal matrix:

T −→















λ1 0 0 · · · 0
0 λ2 0 0
0 λ3 0

0 · · · ...
0 0 0 · · · λN















Definition: Let A be a matrix if there expiates a non singular matrix X such that

X−1AX = A,

where A is a diagonal matrix, we say that the matrix A can be diagonalized and that the
matrix X diagonalizes A.
Recall that whenever two matrices are similar they represent the same operator with respect
to two different basis sets. Thus a matrix A can be diagonalized is equivalent to saying that
there exists a basis such that the corresponding operator takes a simple diagonal form. From
the above discussion it follows that a matrix can be diagonalized if and only if its eigenvectors
form a basis set. We shall be concerned here with general conditions under which a matrix
has enough linearly independent eigenvectors to get a basis.
We have already seen in the previous lecture that the eigenvectors of a matrix corresponding
to distinct eigenvalue are linearly independent. Thus if the characteristic polynomial p(λ) =
det(A−λI) has N distinct roots, the matrix will have N linearly independent eigenvector and
these will form a basis (because the no. LI vectors =N = dimension of space). Selecting the
eigenvectors as the basis will be related to the original form by a similarity transformation.
Thus we shall have

X1AX =











λ1 0 · · · 0
0 λ2 0

0
...

...
0 0 · · · λN











where λ1, λ2, · · · , λN are the eigenvalues of the matrix A. To summarize we have the following
result.

Theorem: A matrix can be diagonalized if all the roots of is characteristic polynomial are
distinct.
This converse of this theorem is not always true. There are matrices for which the charac-
teristic polynomial does not have distinct roots but the matrix can be diagonalized. In this
connection we state a useful result.
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Theorem: If a matrix is normal then it can be diagonalized.

Hermitian, anti-hermitian and unitary matrices are important subsets of set of all normal
matrices.
A real symmetric matrix is hermitian and hence can always be diagonalized. A real antisym-
metric matrix is anti-hermitian and therefore can be diagonalized. A real orthogonal matrix
is unitary and hence normal and therefore can always be diagonalized.

It is easy to give example of matrices which cannot be diagonalized. See the matrices of
Example (3) and Example (4) in Lecture-2. The eigenvectors of these matrices do not form a
basis and hence they cannot be brought to a diagonal form by a change of basis. The simplest
possible forms, other than the diagonal form,to which a matrix can be brought by a change
of basis can be classified. These forms are known as Jordan canonical forms. Results on this
topic of Jordan canonical forms will not be discussed here.

Suppose a matrix A can be diagonalized. How do we find the matrix X which diagonalizes
A(i.e.satisfies X−1AX = diagonal)? The method for doing this will be given by means of an
example.

Lecture - 4 Diagonalization
Let is consider the matrix

A =





3 −5 −4
−5 −6 −5
−4 −5 3





We wish to find the matrix which diagonalizes the above matrix. We first find eigenvalues
and eigenvectors. This was done in Lecture -2. The eigenvalues and eigenvectors were found
to be

λ = 4, u1 =





1
−1
1



 ;λ = 7, u2 =





1
0
−1



 ;λ = −11, u3 =





1
2
1





Note that the eigenvalues are all distinct. Thus the eigenvectors form basis. The columns of
the matrix X are simply the three eigenvectors. Thus

X =
[

u1, u2, u3

]

=





1 1 1
−1 0 2
1 −1 3




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It is easy to verify that X−1AX = a diagonal matrix:

X−1





3 −5 −4
−5 −6 −5
−4 −5 3



X =





4
7

−11





as it should be. Note that the matrix X is not unique. It is possible to perform operators on
X such as

(a) interchange of columns

(b) multiplying X by a non-zero complex number

to get a new matrix X̃ which will also diagonalize the given matrix A.
To summarize the following classes of N ∗N matrices can be diagonalized.

(a) matrices with N distinct eigenvalues

(b) hermitian matrices

(c) anti hermitian matrices

(d) unitary matrices

(e) real symmetric matrices

(f) real antisymmetric matrices

(g) real orthogonal matrices

(h) normal matrices

What can be said about the matrix X which diagonalizes a given matrix A? In this connection
we state the following results.

1 The matrix, which diagonalizes a hermitian matrix, can be chosen to be unitary.

2 For a unitary matrix also the result [1] is true. The matrix which diagonalizes a unitary
matrix can be chosen to unitary.

3 A real symmetric matrix is hermitian and as a special cases of [1], it can always be diagonalized
by a unitary matrix, Also in this case the matrix which diagonalizes a real symmetric matrix
can be chosen to be real orthogonal.

Remark: It is not correct to say that the matrix which diagonalizes a real matrix will always
be real. For example, the matrix which diagonalizes the matrix

[

cos θ − sin θ
sin θ cos θ

]

is a complex matrix and cannot be chosen to be real.
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Functions Of Matrix: Let A be matrix which can be diagonalized. There exists a matrix
X such that

X−1AX =











λ1 0 · · · 0
0 λ2 0

0
...

...
0 0 · · · λN











or, A = X











λ1 0 · · · 0
0 λ2 0

0
...

...
0 0 · · · λN











X−1

where λi are the eigenvalues of the matrix A. The given a function f(.), define f(A) so as to
satisfy

X−1f(A)X =











f(λ1) 0 · · · 0
0 f(λ2) 0

0
...

...
0 0 · · · f(λN)











Thus we arrive at the following definition of function, f(A), of matrix A

f(A) = X











f(λ1) 0 · · · 0
0 f(λ2) 0

0
...

...
0 0 · · · f(λN)











X−1

If the function f(.) has a power series expansion (e.g. the exponential function) the series can
be used to define the matrix function, f(A), of matrix. For example,

exp(A) = 1 + A + A2/2! + A3/3! + · · ·

whenever both methods are applicable they give the same answers.

As with the functions of real or complex variable, some functions can be defined only if the
matrix satisfies additional conditions. For example, logA or

√
A etc. can be defined only for

positive definite matrices.

Caley Hamilton Theorem: The Caley Hamilton theorem states that every matrix satis-
fies its own characteristic equation.

Let p(λ) = det(A− λI) = α0 + α1λ+ α2λ
2 + · · ·+ αNλ

N be the characteristic polynomial of
the matrix A. The characteristic equation is p(λ) = 0. The Caley Hamilton theorem asserts
that

p(A) = 0
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(or,)
α0 + α1A+ α2A

2 + · · ·+ αNA
N = 0

is satisfied as a matrix equation.

Proof: Let B = adj(A − λI) denote the adjoint matrix formed the cofactors of the matrix
A− λI. Then B can be written as

B = B0 +B1λ +B2λ
2 + · · ·+BN−1λ

N−1

where B0, B1, B2, · · · , BN−1 are matrices which do not depend on λ. Note that the elements
of B are polynomials in λ of max degree N-1 only. By the definition of adjoint of a matrix we
have

B(A− λI) = det(A− AI).I

Substituting for B we get

(B0 +B1λ+B2λ
2 + · · ·+BN−1λ

N−1).(A− λI) = det(A−AI).I

Comparing powers of λ on both sides we get

B0A = α0I

B1A− B0 = α1I

B2A− B1 = α2I

B3A− B2 = α3I

· · · = · · · · · ·
− BN−1 = αNI

Multiplying these equations successively on the right by I, A,A2, · · · , AN we and on adding
get

(B1A− B0) + (B2A− B1)A + (B3A− B2)A
2 + · · · −BN−1A

N

= α0 + α1A+ α2A
2 + · · ·+ αNA

N

All the terms on the left hand side cancel pairwise and we get the desired result.

α0 + α1A+ α2A
2 + · · ·+ αNA

N = 0

Acknowledgement: I thank the M.Sc. students of I.I.T. Bhubneswar, (2015 Batch), for pointing
out typing errors and suggesting improvements in an earlier draft.
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§5 Discussion Forum

Question: If a 3 × 3 matrix A has only two distinct eigenvalues, then how to construct a 3 × 3
matrix P which diagonalizes the matrix A?i.e. how to get a matrix P such that

P−1AP = diagonal matrix?

(i) If a 3× 3 matrix A has only two distinct eigenvalues, then there are two possibilities.

(ii) It may have three independent eigenvectors. In that case the matrix can be constructed as usual.
See Example 2, page §2 of QuickReview-Matrices.pdf

(iii) The matrix may have only two eigenvectors as is the case in Example-3 on page 10 of QuickReview-Matrices.pdf.

In this case the matrix P does not exists and the given matrix A is cannot be diagonalized.

Question: How to find linearly independent eigenvectors?

(i) Read the examples calculating eigenvalues and eigenvectors of a matrix carefully.

Question: What is the most general form of a matrix which can be diagonalized and has all three

eigenvalues equal?

(i) Suppose S is matrix which has all three eigenvalues equal to some value α and suppose it is diago-
nalized by a matrix P . Then we must have

P
−1

SP = a Diagonal matrix D (27)

∴ S = PDP
−1 (28)

where

D =





α 0 0
0 α 0
0 0 α



 = αÎ (29)

where Î is identity matrix. Hence

S = PDP
−1 = αP ÎP

−1 = αÎ. (30)

Thus the given matrix must be a multiple of the identity matrix.
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Question: What is pure phase? 14 of QuickReview-Matrices

(i) By pure phase I mean complex number z such that |z| = 1.

(ii) Every complex number can be written in polar form

z = re
iα

So z is pure phase when r ≡ |z| = 1.

(iii) A pure phase is a complex number of the form eiα where α is a real number.
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