Notes for Lectures on Quantum Mechanics * How to Choose a Suitable Basis for A Degenerate Level?

A. K. Kapoor http://0space.org/users/kapoor akkapoor@cmi.ac.in; akkhcu@gmail.com

Contents

1. Assume that $\{E_n, u_n\}$ are eigen values and eigen functions of unperturbed Hamiltonian operator H_0) and that level E_n is degenerate. So

$$\ddot{H}u_n^a = E_n u_n^a, \qquad a = 1, 2, \dots$$

- 2. A perturbation H_0 is switched on and we want to compute corrections to energy levels using degenerate perturbation theory.
- 3. For the first order corrections to the degenerate level we need to diagonalize the matrix and find its eigen values and eigen vectors. The matrix is

$$(u_n^{(1)}, H'u_n^{(1)})\alpha_1 + (u_n^{(1)}, H'u_n^{(2)})\alpha_2 = W_1\alpha_1$$
(1)

4. In stead of using $u_n^{(a)}$ as zeroth order eigen functions, we can start with their arbitrary linear combinations $v_n^{(a)}$

$$v^{(b)}(x) = \sum_{a} C_{ba} u_n^{(a)}(x)$$
(2)

These will again be eigen functions of H_0 with the same energy E_n .

 $^{^{*}}$ qm-lec-23010; Updated:Oct 6, 2021; Ver 1.x

- 5. We are interested in asking ," How to choose basis functions $v_n^{(a)}(x)$ so that the matrix to be diagonalized can be made to have as many as possible off diagonal matrix elements may vanish?"
- 6. Suppose we can find an operator X which commutes with both H_0, H' . Then the set $\{v_n^{(a)}|a=,1,2...\}$ should be selected to be simultaneous eigen vectors of H and X and will satisfy the eigen value equations

$$H_0 v_n^{(a)} = E_n v_n^{(a)}, \qquad X v_n^{(a)} = \lambda_a v_n^{(a)}.$$
 (3)

The off diagonal terms $\left(v_n^{(b)}H'v_n^{(a)}\right)$ will have vanish when ever $\lambda \neq \lambda_b$.

7. The vanishing of matrix elements mentioned in the above is a follows from the proposition given below.

If the commutator of X with H', be zero, then

$$(u^{(a)}, H'u^{(b)}) = 0 \text{ if } \lambda_{a,n} \neq \lambda_{b,n}.$$
(4)

where $u^{(a)}$ are eigenvectors of X with eigen value λ_a

We say that the operator H' cannot 'connect' eigen vectors $u^{(a)}, u^{(b)}$ of \hat{X} with different eigenvalues $\lambda_a \neq \lambda_b$.

qm-lec-2301	.0 1.x	Created: Aug 31, 202	1 Printed: November 6, 2021	KApoor
Proofs	LICENS	SE: CREATIVE COMMONS	NO WARRANTY, IMPLIED OR	OTHERWISE
Open MEXFi	le	qm-lec-23010		