Notes for Lectures in Quantum Mechanics* Perturbation Theory For Time Independent Problems

A. K. Kapoor <http://0space.org/users/kapoor>

[akkapoor@cmi.ac.in;](akkapoor@cmi.ac.in) akkhcu@gmail.com

Contents

1 Basic Set up

We shall discuss the perturbation theory method for time independent problems. Given time independent Hamiltonian H , our aim is to compute the eigenvalues and eigenfunctions, ψ , of Hamiltonian and the corresponding eigenvalues W.

$$
H\psi = W\psi \tag{1}
$$

In the perturbation theory method the starting point is to split the Hamiltonian of the system, H , into two parts

$$
H = H_0 + \lambda H'
$$

Here λ is a constant.

The splitting $H = H_0 + \lambda H'$ must be done in such a way that the eigenvalue problem for H_0

$$
H_0 u_n = E_n u_n \tag{2}
$$

can be solved exactly.

^{*} Updated:Jul 14, 2021; Ver 0.x

Both H_0 and H' will be assumed to be hermitian.

If E_n and u_n denote the eigenvalues and eigenfunctions of H_0 . The eigenfunctions u_n of unperturbed Hamiltonian will be orthogonal. We will assume u_n to be normalized and hence satisfy the orthonormalization condition.

$$
(u_n, u_m) = \delta_{nm} \tag{3}
$$

It is further assumed that the additional part $\lambda H'$ has small in matrix elements as compared to H_0 .

2 An Overview of the Method

The approximate solution is obtained by assuming that the exact eigenvalues and eigenfunctions have an expansion in powers of λ and that it is sufficient to keep first few terms of the expansion in powers of λ .

We shall write

$$
H = H_0 + \lambda H'
$$
\n⁽⁴⁾

where λ is introduced for book keeping purposes and at the end of all computations λ will be set equal to one.

Further, it will be assumed that, ψ and W can be expanded in powers of λ

$$
\psi = \psi_0 + \lambda \psi_1 + \lambda^2 \psi_2 + \cdots \tag{5}
$$

$$
W = W_0 + \lambda W_1 + \lambda^2 W_2 + \cdots \tag{6}
$$

3 Order by order corrections

Substituting Eq.[\(5\)](#page-1-2)-[\(6\)](#page-1-2) in eigevalue equation $H\psi = W\psi$ and comparing different powers of λ gives

$$
H_0\psi_0 = W_0\psi_0 \tag{7}
$$

$$
H_0\psi_1 + H'\psi_0 = W_0\psi_1 + W_1\psi_0 \tag{8}
$$

$$
H_0\psi_2 + H'\psi_1 = W_0\psi_2 + W_1\psi_1 + W_2\psi_0.
$$
\n(9)

These equations are solved recursively for W_1, ψ_1, W_2, ψ_2 etc. Keeping first few terms in series expansions [\(8\)](#page-1-3)-[\(9\)](#page-1-3) gives the desired approximate solutions.

The terms proportional to λ^n in Eq.[\(5\)](#page-1-2)-[\(6\)](#page-1-2) will be called n^{th} order correction the eigenvalue and the eigenfunction respectively.

