Problems on Matrix Diagonalization

Kapoor
School of Physics
University of Hyderabad Hyderabad-500046

June 11, 2019

Abstract

This document contains 150 different sets of matrices. Each set has five 3×3 matrices, with one matrix each of the following type: 1. All three eigenvalues are different; 2. Two eigenvalues are same and there are two linearly independent eigenvectors for this eigenvalue; 3. Two eigenvalues are equal and there is only one linearly independent eigenvector for this eigenvalue; 4. All the three eigenvalues are equal, and the matrix has in all two linearly independent eigenvectors; 5. All the three eigenvalues are equal, but the matrix has only one linearly independent eigenvector; 6. Answers on A4 size paper only. Attach the question paper with your answer sheets.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -|

Mathematical Physics

[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}-7 & -7 & 1 \\ 5 & 5 & -1 \\ -3 & -3 & 1\end{array}\right)$
(b) $\left(\begin{array}{ccc}-3 & 4 & 4 \\ 0 & -3 & 0 \\ 0 & 2 & -1\end{array}\right)$
(c) $\left(\begin{array}{ccc}-2 & -6 & 3 \\ 4 & 0 & 5 \\ 2 & 4 & -1\end{array}\right)$
(d) $\left(\begin{array}{ccc}-1 & 2 & 2 \\ -1 & -4 & -1 \\ -1 & -1 & -4\end{array}\right)$
(e) $\left(\begin{array}{ccc}-1 & 1 & 2 \\ 2 & -2 & 5 \\ -2 & -1 & -6\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1 .
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -|

Mathematical Physics

[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}-7 & -7 & 6 \\ 8 & 8 & -6 \\ -5 & -5 & 6\end{array}\right)$
(b) $\left(\begin{array}{ccc}0 & 0 & 3 \\ -2 & -2 & -3 \\ -2 & 0 & -5\end{array}\right)$
(c) $\left(\begin{array}{ccc}-4 & -8 & -7 \\ 1 & -3 & 1 \\ 3 & 7 & 6\end{array}\right)$
(d) $\left(\begin{array}{ccc}1 & -3 & 6 \\ -1 & -1 & -2 \\ -2 & 2 & -6\end{array}\right)$
(e) $\left(\begin{array}{ccc}0 & 2 & 4 \\ -1 & 0 & 1 \\ -2 & -2 & -6\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1 .
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -|

Mathematical Physics

MM: 20
[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}-7 & -6 & -9 \\ 4 & 5 & 4 \\ 6 & 4 & 8\end{array}\right)$
(b) $\left(\begin{array}{ccc}-7 & 5 & -5 \\ -5 & 3 & -5 \\ 5 & -5 & 3\end{array}\right)$
(c) $\left(\begin{array}{lll}-3 & -2 & 3 \\ -2 & -3 & 3 \\ -4 & -8 & 7\end{array}\right)$
(d) $\left(\begin{array}{ccc}-4 & 2 & -2 \\ 0 & -2 & 0 \\ 2 & -2 & 0\end{array}\right)$
(e) $\left(\begin{array}{lll}-4 & -2 & 6 \\ -4 & -6 & 6 \\ -3 & -3 & 4\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1 .
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -|

Mathematical Physics

[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\left(\begin{array}{ccc}-7 & -6 & -7 \\ -6 & -3 & -6 \\ 2 & 6 & 2\end{array}\right)\right)$
(b) $\left(\begin{array}{ccc}1 & 0 & -4 \\ 2 & -3 & -2 \\ 2 & 0 & -5\end{array}\right)$
(c) $\left(\begin{array}{ccc}-1 & 0 & 2 \\ 0 & -3 & 6 \\ 0 & -1 & 2\end{array}\right)$
(d) $\left(\begin{array}{ccc}-1 & 1 & 0 \\ -1 & -3 & 0 \\ 1 & 1 & -2\end{array}\right)$
(e) $\left(\begin{array}{lll}-6 & 4 & 4 \\ -2 & 0 & 2 \\ -1 & 0 & 0\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1 .
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -|

Mathematical Physics

MM: 20
[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}-7 & -6 & 5 \\ 7 & 6 & -5 \\ -4 & -4 & 4\end{array}\right)$
(b) $\left(\begin{array}{ccc}-5 & 0 & 4 \\ -2 & -1 & 2 \\ -2 & 0 & 1\end{array}\right)$
(c) $\left(\begin{array}{ccc}1 & -1 & 0 \\ -1 & 1 & 1 \\ -1 & -1 & 2\end{array}\right)$
(d) $\left(\begin{array}{ccc}-1 & 2 & -2 \\ 0 & -2 & 1 \\ 0 & -1 & 0\end{array}\right)$
(e) $\left(\begin{array}{ccc}4 & 0 & -6 \\ 3 & -2 & -3 \\ 8 & -4 & -8\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1 .
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -|

Mathematical Physics

[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}-7 & -3 & -5 \\ 7 & 3 & 5 \\ -1 & -1 & 1\end{array}\right)$
(b) $\left(\begin{array}{ccc}-6 & -2 & 4 \\ 6 & 1 & -6 \\ -2 & -1 & 0\end{array}\right)$
(c) $\left(\begin{array}{ccc}3 & -1 & -1 \\ 0 & 2 & -1 \\ 1 & -1 & 3\end{array}\right)$
(d) $\left(\begin{array}{ccc}-3 & 4 & 0 \\ -1 & 1 & 0 \\ -2 & 4 & -1\end{array}\right)$
(e) $\left(\begin{array}{ccc}2 & -1 & -3 \\ -1 & 0 & 1 \\ 4 & -2 & -5\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1 .
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -|

Mathematical Physics

MM: 20
[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}-6 & -8 & 5 \\ 7 & 9 & -5 \\ -6 & -6 & 7\end{array}\right)$
(b) $\left(\begin{array}{ccc}-4 & 6 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & -1\end{array}\right)$
(c) $\left(\begin{array}{ccc}4 & -1 & -1 \\ -1 & 4 & 1 \\ 4 & -5 & -1\end{array}\right)$
(d) $\left(\begin{array}{ccc}-3 & 4 & 0 \\ -1 & 1 & 0 \\ -3 & 6 & -1\end{array}\right)$
(e) $\left(\begin{array}{ccc}0 & 1 & 0 \\ -1 & 2 & 0 \\ 2 & -3 & 1\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1 .
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -|

Mathematical Physics

MM: 20
[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}-6 & -6 & 3 \\ 5 & 5 & -3 \\ -4 & -4 & 3\end{array}\right)$
(b) $\left(\begin{array}{ccc}7 & -8 & -4 \\ 0 & -1 & 0 \\ 8 & -8 & -5\end{array}\right)$
(c) $\left(\begin{array}{ccc}2 & 0 & 3 \\ 3 & -1 & 3 \\ 6 & -6 & 2\end{array}\right)$
(d) $\left(\begin{array}{ccc}-1 & -8 & 4 \\ 0 & -5 & 2 \\ 0 & -8 & 3\end{array}\right)$
(e) $\left(\begin{array}{ccc}2 & -1 & 0 \\ -2 & 1 & -1 \\ 2 & 3 & 3\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1 .
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -|

Mathematical Physics

[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}-6 & -5 & 4 \\ 6 & 5 & -4 \\ -3 & -3 & 3\end{array}\right)$
(b) $\left(\begin{array}{ccc}-2 & 1 & -3 \\ 1 & -2 & 3 \\ 1 & -1 & 2\end{array}\right)$
(c) $\left(\begin{array}{ccc}-2 & -6 & 3 \\ 4 & 0 & 5 \\ 2 & 4 & -1\end{array}\right)$
(d) $\left(\begin{array}{lll}3 & -4 & 0 \\ 1 & -1 & 0 \\ 2 & -4 & 1\end{array}\right)$
(e) $\left(\begin{array}{ccc}-4 & -6 & -3 \\ 8 & 8 & 4 \\ 0 & 3 & 2\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1 .
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -I

Mathematical Physics

[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}-6 & 0 & -2 \\ -3 & 0 & -3 \\ 3 & 0 & -1\end{array}\right)$
(b) $\left(\begin{array}{ccc}-1 & -2 & 6 \\ 0 & -3 & 6 \\ 0 & -1 & 2\end{array}\right)$
(c) $\left(\begin{array}{ccc}-4 & -8 & -7 \\ 1 & -3 & 1 \\ 3 & 7 & 6\end{array}\right)$
(d) $\left(\begin{array}{ccc}1 & 0 & 0 \\ 3 & 1 & -6 \\ 0 & 0 & 1\end{array}\right)$
(e) $\left(\begin{array}{ccc}4 & -1 & -1 \\ 2 & -1 & -2 \\ -3 & 7 & 6\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1 .
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -|

Mathematical Physics

[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}-6 & 5 & -6 \\ -6 & 5 & -6 \\ 4 & -4 & 2\end{array}\right)$
(b) $\left(\begin{array}{ccc}-1 & 2 & 0 \\ -1 & 2 & 0 \\ 0 & 0 & 1\end{array}\right)$
(c) $\left(\begin{array}{lll}-3 & -2 & 3 \\ -2 & -3 & 3 \\ -4 & -8 & 7\end{array}\right)$
(d) $\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 3 & -6 & 1\end{array}\right)$
(e) $\left(\begin{array}{ccc}2 & 2 & 1 \\ 3 & 0 & -3 \\ -4 & 5 & 7\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1.
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -|

Mathematical Physics

[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}-6 & 8 & -6 \\ -8 & 9 & -8 \\ 3 & -4 & 3\end{array}\right)$
(b) $\left(\begin{array}{ccc}-3 & -8 & 8 \\ 0 & 1 & -4 \\ 0 & 0 & -3\end{array}\right)$
(c) $\left(\begin{array}{ccc}-1 & 0 & 2 \\ 0 & -3 & 6 \\ 0 & -1 & 2\end{array}\right)$
(d) $\left(\begin{array}{ccc}2 & -8 & -4 \\ 0 & -2 & -2 \\ 0 & 8 & 6\end{array}\right)$
(e) $\left(\begin{array}{ccc}-1 & 1 & 2 \\ 2 & -2 & 5 \\ -2 & -1 & -6\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1 .
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -|

Mathematical Physics

MM: 20
[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}-5 & -9 & 2 \\ 2 & 6 & -2 \\ -5 & -5 & 2\end{array}\right)$
(b) $\left(\begin{array}{ccc}1 & -6 & -3 \\ 0 & -1 & -1 \\ 0 & 2 & 2\end{array}\right)$
(c) $\left(\begin{array}{ccc}1 & -1 & 0 \\ -1 & 1 & 1 \\ -1 & -1 & 2\end{array}\right)$
(d) $\left(\begin{array}{ccc}2 & 1 & 2 \\ 1 & 2 & -2 \\ -1 & 1 & 5\end{array}\right)$
(e) $\left(\begin{array}{ccc}0 & 2 & 4 \\ -1 & 0 & 1 \\ -2 & -2 & -6\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1 .
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -|

Mathematical Physics

[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}-5 & -7 & 1 \\ 5 & 7 & -1 \\ -3 & -3 & 3\end{array}\right)$
(b) $\left(\begin{array}{ccc}2 & 2 & 0 \\ 0 & 1 & 0 \\ -2 & -4 & 1\end{array}\right)$
(c) $\left(\begin{array}{ccc}3 & -1 & -1 \\ 0 & 2 & -1 \\ 1 & -1 & 3\end{array}\right)$
(d) $\left(\begin{array}{ccc}7 & -4 & -2 \\ 4 & -1 & -2 \\ 0 & 0 & 3\end{array}\right)$
(e) $\left(\begin{array}{lll}-4 & -2 & 6 \\ -4 & -6 & 6 \\ -3 & -3 & 4\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1.
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -|

Mathematical Physics

[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}-5 & -6 & 0 \\ 4 & -3 & 4 \\ 6 & 6 & 1\end{array}\right)$
(b) $\left(\begin{array}{ccc}-2 & 4 & 0 \\ 0 & 2 & 0 \\ -4 & 4 & 2\end{array}\right)$
(c) $\left(\begin{array}{ccc}4 & -1 & -1 \\ -1 & 4 & 1 \\ 4 & -5 & -1\end{array}\right)$
(d) $\left(\begin{array}{ccc}-1 & 2 & 2 \\ -1 & -4 & -1 \\ -1 & -1 & -4\end{array}\right)$
(e) $\left(\begin{array}{lll}-6 & 4 & 4 \\ -2 & 0 & 2 \\ -1 & 0 & 0\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1.
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -|

Mathematical Physics

MM: 20
[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}-5 & -3 & 3 \\ 2 & 0 & -2 \\ -6 & -6 & 2\end{array}\right)$
(b) $\left(\begin{array}{ccc}2 & 0 & 0 \\ 8 & -2 & -4 \\ -4 & 2 & 4\end{array}\right)$
(c) $\left(\begin{array}{ccc}2 & 0 & 3 \\ 3 & -1 & 3 \\ 6 & -6 & 2\end{array}\right)$
(d) $\left(\begin{array}{ccc}1 & -3 & 6 \\ -1 & -1 & -2 \\ -2 & 2 & -6\end{array}\right)$
(e) $\left(\begin{array}{ccc}4 & 0 & -6 \\ 3 & -2 & -3 \\ 8 & -4 & -8\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1.
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -|

Mathematical Physics

[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}-5 & 0 & -2 \\ -3 & 1 & -3 \\ 3 & 0 & 0\end{array}\right)$
(b) $\left(\begin{array}{ccc}1 & -1 & 0 \\ 0 & 2 & 0 \\ -1 & -1 & 2\end{array}\right)$
(c) $\left(\begin{array}{ccc}-2 & -6 & 3 \\ 4 & 0 & 5 \\ 2 & 4 & -1\end{array}\right)$
(d) $\left(\begin{array}{ccc}-4 & 2 & -2 \\ 0 & -2 & 0 \\ 2 & -2 & 0\end{array}\right)$
(e) $\left(\begin{array}{ccc}2 & -1 & -3 \\ -1 & 0 & 1 \\ 4 & -2 & -5\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1.
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -|

Mathematical Physics

[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{lll}-5 & 5 & 5 \\ -2 & 4 & 3 \\ -8 & 6 & 7\end{array}\right)$
(b) $\left(\begin{array}{ccc}6 & -4 & 1 \\ 3 & -1 & 1 \\ 0 & 0 & 3\end{array}\right)$
(c) $\left(\begin{array}{ccc}-4 & -8 & -7 \\ 1 & -3 & 1 \\ 3 & 7 & 6\end{array}\right)$
(d) $\left(\begin{array}{ccc}-1 & 1 & 0 \\ -1 & -3 & 0 \\ 1 & 1 & -2\end{array}\right)$
(e) $\left(\begin{array}{ccc}0 & 1 & 0 \\ -1 & 2 & 0 \\ 2 & -3 & 1\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1.
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -|

Mathematical Physics

[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}-5 & 6 & -4 \\ -6 & 6 & -6 \\ 2 & -3 & 1\end{array}\right)$
(b) $\left(\begin{array}{ccc}3 & -2 & -2 \\ 0 & 3 & 0 \\ 0 & -2 & 1\end{array}\right)$
(c) $\left(\begin{array}{lll}-3 & -2 & 3 \\ -2 & -3 & 3 \\ -4 & -8 & 7\end{array}\right)$
(d) $\left(\begin{array}{ccc}-1 & 2 & -2 \\ 0 & -2 & 1 \\ 0 & -1 & 0\end{array}\right)$
(e) $\left(\begin{array}{ccc}2 & -1 & 0 \\ -2 & 1 & -1 \\ 2 & 3 & 3\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1 .
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -|

Mathematical Physics

[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}-4 & -6 & 3 \\ 5 & 7 & -3 \\ -4 & -4 & 5\end{array}\right)$
(b) $\left(\begin{array}{ccc}5 & 0 & 2 \\ 2 & 3 & 2 \\ -4 & 0 & -1\end{array}\right)$
(c) $\left(\begin{array}{ccc}-1 & 0 & 2 \\ 0 & -3 & 6 \\ 0 & -1 & 2\end{array}\right)$
(d) $\left(\begin{array}{ccc}-3 & 4 & 0 \\ -1 & 1 & 0 \\ -2 & 4 & -1\end{array}\right)$
(e) $\left(\begin{array}{ccc}-4 & -6 & -3 \\ 8 & 8 & 4 \\ 0 & 3 & 2\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1.
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -|

Mathematical Physics

MM: 20
[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}-4 & -5 & 3 \\ 7 & 8 & -3 \\ 5 & 5 & -2\end{array}\right)$
(b) $\left(\begin{array}{ccc}1 & -1 & 0 \\ 2 & 4 & 0 \\ 4 & 2 & 3\end{array}\right)$
(c) $\left(\begin{array}{ccc}1 & -1 & 0 \\ -1 & 1 & 1 \\ -1 & -1 & 2\end{array}\right)$
(d) $\left(\begin{array}{ccc}-3 & 4 & 0 \\ -1 & 1 & 0 \\ -3 & 6 & -1\end{array}\right)$
(e) $\left(\begin{array}{ccc}4 & -1 & -1 \\ 2 & -1 & -2 \\ -3 & 7 & 6\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1.
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -|

Mathematical Physics

[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}-4 & -4 & -2 \\ 7 & 7 & 2 \\ 1 & 1 & 2\end{array}\right)$
(b) $\left(\begin{array}{ccc}-3 & 4 & 4 \\ 0 & -3 & 0 \\ 0 & 2 & -1\end{array}\right)$
(c) $\left(\begin{array}{ccc}3 & -1 & -1 \\ 0 & 2 & -1 \\ 1 & -1 & 3\end{array}\right)$
(d) $\left(\begin{array}{ccc}-1 & -8 & 4 \\ 0 & -5 & 2 \\ 0 & -8 & 3\end{array}\right)$
(e) $\left(\begin{array}{ccc}2 & 2 & 1 \\ 3 & 0 & -3 \\ -4 & 5 & 7\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1 .
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -|

Mathematical Physics

[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{lll}-4 & -4 & 1 \\ -3 & -3 & 3 \\ -6 & -6 & 3\end{array}\right)$
(b) $\left(\begin{array}{ccc}0 & 0 & 3 \\ -2 & -2 & -3 \\ -2 & 0 & -5\end{array}\right)$
(c) $\left(\begin{array}{ccc}4 & -1 & -1 \\ -1 & 4 & 1 \\ 4 & -5 & -1\end{array}\right)$
(d) $\left(\begin{array}{lll}3 & -4 & 0 \\ 1 & -1 & 0 \\ 2 & -4 & 1\end{array}\right)$
(e) $\left(\begin{array}{ccc}-1 & 1 & 2 \\ 2 & -2 & 5 \\ -2 & -1 & -6\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1.
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -|

Mathematical Physics

[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}-4 & -4 & 5 \\ 3 & 3 & -5 \\ 4 & 4 & -5\end{array}\right)$
(b) $\left(\begin{array}{ccc}-7 & 5 & -5 \\ -5 & 3 & -5 \\ 5 & -5 & 3\end{array}\right)$
(c) $\left(\begin{array}{ccc}2 & 0 & 3 \\ 3 & -1 & 3 \\ 6 & -6 & 2\end{array}\right)$
(d) $\left(\begin{array}{ccc}1 & 0 & 0 \\ 3 & 1 & -6 \\ 0 & 0 & 1\end{array}\right)$
(e) $\left(\begin{array}{ccc}0 & 2 & 4 \\ -1 & 0 & 1 \\ -2 & -2 & -6\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1.
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -|

Mathematical Physics

[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}-4 & -3 & -1 \\ -2 & 3 & -2 \\ 2 & 6 & -1\end{array}\right)$
(b) $\left(\begin{array}{ccc}1 & 0 & -4 \\ 2 & -3 & -2 \\ 2 & 0 & -5\end{array}\right)$
(c) $\left(\begin{array}{ccc}-2 & -6 & 3 \\ 4 & 0 & 5 \\ 2 & 4 & -1\end{array}\right)$
(d) $\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 3 & -6 & 1\end{array}\right)$
(e) $\left(\begin{array}{lll}-4 & -2 & 6 \\ -4 & -6 & 6 \\ -3 & -3 & 4\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1.
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -|

Mathematical Physics

[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}-4 & -2 & -5 \\ 2 & 0 & 2 \\ 2 & 2 & 3\end{array}\right)$
(b) $\left(\begin{array}{ccc}-5 & 0 & 4 \\ -2 & -1 & 2 \\ -2 & 0 & 1\end{array}\right)$
(c) $\left(\begin{array}{ccc}-4 & -8 & -7 \\ 1 & -3 & 1 \\ 3 & 7 & 6\end{array}\right)$
(d) $\left(\begin{array}{ccc}2 & -8 & -4 \\ 0 & -2 & -2 \\ 0 & 8 & 6\end{array}\right)$
(e) $\left(\begin{array}{lll}-6 & 4 & 4 \\ -2 & 0 & 2 \\ -1 & 0 & 0\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1 .
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -|

Mathematical Physics

MM: 20
[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}-4 & -1 & -3 \\ 3 & 0 & 3 \\ -1 & -1 & 0\end{array}\right)$
(b) $\left(\begin{array}{ccc}-6 & -2 & 4 \\ 6 & 1 & -6 \\ -2 & -1 & 0\end{array}\right)$
(c) $\left(\begin{array}{lll}-3 & -2 & 3 \\ -2 & -3 & 3 \\ -4 & -8 & 7\end{array}\right)$
(d) $\left(\begin{array}{ccc}2 & 1 & 2 \\ 1 & 2 & -2 \\ -1 & 1 & 5\end{array}\right)$
(e) $\left(\begin{array}{ccc}4 & 0 & -6 \\ 3 & -2 & -3 \\ 8 & -4 & -8\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1.
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -|

Mathematical Physics

[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}-4 & -1 & 2 \\ -4 & -1 & 2 \\ -5 & 1 & 1\end{array}\right)$
(b) $\left(\begin{array}{ccc}-4 & 6 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & -1\end{array}\right)$
(c) $\left(\begin{array}{ccc}-1 & 0 & 2 \\ 0 & -3 & 6 \\ 0 & -1 & 2\end{array}\right)$
(d) $\left(\begin{array}{ccc}7 & -4 & -2 \\ 4 & -1 & -2 \\ 0 & 0 & 3\end{array}\right)$
(e) $\left(\begin{array}{ccc}2 & -1 & -3 \\ -1 & 0 & 1 \\ 4 & -2 & -5\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1.
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -|

Mathematical Physics

[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}-4 & 0 & -6 \\ 4 & 0 & 6 \\ 1 & 0 & 1\end{array}\right)$
(b) $\left(\begin{array}{ccc}7 & -8 & -4 \\ 0 & -1 & 0 \\ 8 & -8 & -5\end{array}\right)$
(c) $\left(\begin{array}{ccc}1 & -1 & 0 \\ -1 & 1 & 1 \\ -1 & -1 & 2\end{array}\right)$
(d) $\left(\begin{array}{ccc}-1 & 2 & 2 \\ -1 & -4 & -1 \\ -1 & -1 & -4\end{array}\right)$
(e) $\left(\begin{array}{ccc}0 & 1 & 0 \\ -1 & 2 & 0 \\ 2 & -3 & 1\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1.
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -|

Mathematical Physics

MM: 20
[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}-4 & 2 & 2 \\ -4 & 2 & 2 \\ 4 & -4 & -4\end{array}\right)$
(b) $\left(\begin{array}{ccc}-2 & 1 & -3 \\ 1 & -2 & 3 \\ 1 & -1 & 2\end{array}\right)$
(c) $\left(\begin{array}{ccc}3 & -1 & -1 \\ 0 & 2 & -1 \\ 1 & -1 & 3\end{array}\right)$
(d) $\left(\begin{array}{ccc}1 & -3 & 6 \\ -1 & -1 & -2 \\ -2 & 2 & -6\end{array}\right)$
(e) $\left(\begin{array}{ccc}2 & -1 & 0 \\ -2 & 1 & -1 \\ 2 & 3 & 3\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1 .
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -I

Mathematical Physics

MM: 20
[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}-4 & 4 & 4 \\ -7 & 7 & 4 \\ 7 & -7 & -4\end{array}\right)$
(b) $\left(\begin{array}{ccc}-1 & -2 & 6 \\ 0 & -3 & 6 \\ 0 & -1 & 2\end{array}\right)$
(c) $\left(\begin{array}{ccc}4 & -1 & -1 \\ -1 & 4 & 1 \\ 4 & -5 & -1\end{array}\right)$
(d) $\left(\begin{array}{ccc}-4 & 2 & -2 \\ 0 & -2 & 0 \\ 2 & -2 & 0\end{array}\right)$
(e) $\left(\begin{array}{ccc}-4 & -6 & -3 \\ 8 & 8 & 4 \\ 0 & 3 & 2\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1 .
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -|

Mathematical Physics

[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}-4 & 4 & 4 \\ -5 & 5 & 4 \\ 5 & -5 & -4\end{array}\right)$
(b) $\left(\begin{array}{ccc}-1 & 2 & 0 \\ -1 & 2 & 0 \\ 0 & 0 & 1\end{array}\right)$
(c) $\left(\begin{array}{ccc}2 & 0 & 3 \\ 3 & -1 & 3 \\ 6 & -6 & 2\end{array}\right)$
(d) $\left(\begin{array}{ccc}-1 & 1 & 0 \\ -1 & -3 & 0 \\ 1 & 1 & -2\end{array}\right)$
(e) $\left(\begin{array}{ccc}4 & -1 & -1 \\ 2 & -1 & -2 \\ -3 & 7 & 6\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1.
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -|

Mathematical Physics

[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{lll}-4 & 6 & 6 \\ -2 & 4 & 5 \\ -2 & 2 & 1\end{array}\right)$
(b) $\left(\begin{array}{ccc}-3 & -8 & 8 \\ 0 & 1 & -4 \\ 0 & 0 & -3\end{array}\right)$
(c) $\left(\begin{array}{ccc}-2 & -6 & 3 \\ 4 & 0 & 5 \\ 2 & 4 & -1\end{array}\right)$
(d) $\left(\begin{array}{ccc}-1 & 2 & -2 \\ 0 & -2 & 1 \\ 0 & -1 & 0\end{array}\right)$
(e) $\left(\begin{array}{ccc}2 & 2 & 1 \\ 3 & 0 & -3 \\ -4 & 5 & 7\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1 .
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -|

Mathematical Physics

[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}-4 & 6 & 6 \\ 2 & 0 & 3 \\ -6 & 6 & 3\end{array}\right)$
(b) $\left(\begin{array}{ccc}1 & -6 & -3 \\ 0 & -1 & -1 \\ 0 & 2 & 2\end{array}\right)$
(c) $\left(\begin{array}{ccc}-4 & -8 & -7 \\ 1 & -3 & 1 \\ 3 & 7 & 6\end{array}\right)$
(d) $\left(\begin{array}{ccc}-3 & 4 & 0 \\ -1 & 1 & 0 \\ -2 & 4 & -1\end{array}\right)$
(e) $\left(\begin{array}{ccc}-1 & 1 & 2 \\ 2 & -2 & 5 \\ -2 & -1 & -6\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1.
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -|

Mathematical Physics

[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}-3 & -7 & 1 \\ 1 & 5 & -1 \\ -5 & -5 & 3\end{array}\right)$
(b) $\left(\begin{array}{ccc}2 & 2 & 0 \\ 0 & 1 & 0 \\ -2 & -4 & 1\end{array}\right)$
(c) $\left(\begin{array}{lll}-3 & -2 & 3 \\ -2 & -3 & 3 \\ -4 & -8 & 7\end{array}\right)$
(d) $\left(\begin{array}{ccc}-3 & 4 & 0 \\ -1 & 1 & 0 \\ -3 & 6 & -1\end{array}\right)$
(e) $\left(\begin{array}{ccc}0 & 2 & 4 \\ -1 & 0 & 1 \\ -2 & -2 & -6\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1.
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -|

Mathematical Physics

[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}-3 & -6 & -4 \\ -5 & -2 & -5 \\ 6 & 6 & 7\end{array}\right)$
(b) $\left(\begin{array}{ccc}-2 & 4 & 0 \\ 0 & 2 & 0 \\ -4 & 4 & 2\end{array}\right)$
(c) $\left(\begin{array}{ccc}-1 & 0 & 2 \\ 0 & -3 & 6 \\ 0 & -1 & 2\end{array}\right)$
(d) $\left(\begin{array}{ccc}-1 & -8 & 4 \\ 0 & -5 & 2 \\ 0 & -8 & 3\end{array}\right)$
(e) $\left(\begin{array}{lll}-4 & -2 & 6 \\ -4 & -6 & 6 \\ -3 & -3 & 4\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1.
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -|

Mathematical Physics

[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}-3 & -4 & -6 \\ 5 & 6 & 6 \\ 5 & 5 & 7\end{array}\right)$
(b) $\left(\begin{array}{ccc}2 & 0 & 0 \\ 8 & -2 & -4 \\ -4 & 2 & 4\end{array}\right)$
(c) $\left(\begin{array}{ccc}1 & -1 & 0 \\ -1 & 1 & 1 \\ -1 & -1 & 2\end{array}\right)$
(d) $\left(\begin{array}{lll}3 & -4 & 0 \\ 1 & -1 & 0 \\ 2 & -4 & 1\end{array}\right)$
(e) $\left(\begin{array}{lll}-6 & 4 & 4 \\ -2 & 0 & 2 \\ -1 & 0 & 0\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1.
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -|

Mathematical Physics

[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}-3 & -4 & -5 \\ -1 & 0 & -1 \\ 4 & 4 & 6\end{array}\right)$
(b) $\left(\begin{array}{ccc}1 & -1 & 0 \\ 0 & 2 & 0 \\ -1 & -1 & 2\end{array}\right)$
(c) $\left(\begin{array}{ccc}3 & -1 & -1 \\ 0 & 2 & -1 \\ 1 & -1 & 3\end{array}\right)$
(d) $\left(\begin{array}{ccc}1 & 0 & 0 \\ 3 & 1 & -6 \\ 0 & 0 & 1\end{array}\right)$
(e) $\left(\begin{array}{ccc}4 & 0 & -6 \\ 3 & -2 & -3 \\ 8 & -4 & -8\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1.
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -|

Mathematical Physics

[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}-3 & -3 & -5 \\ 4 & 4 & 5 \\ 4 & 4 & 5\end{array}\right)$
(b) $\left(\begin{array}{ccc}6 & -4 & 1 \\ 3 & -1 & 1 \\ 0 & 0 & 3\end{array}\right)$
(c) $\left(\begin{array}{ccc}4 & -1 & -1 \\ -1 & 4 & 1 \\ 4 & -5 & -1\end{array}\right)$
(d) $\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 3 & -6 & 1\end{array}\right)$
(e) $\left(\begin{array}{ccc}2 & -1 & -3 \\ -1 & 0 & 1 \\ 4 & -2 & -5\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1.
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -|

Mathematical Physics

[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}-3 & -3 & 0 \\ 4 & 2 & 2 \\ 3 & -3 & 6\end{array}\right)$
(b) $\left(\begin{array}{ccc}3 & -2 & -2 \\ 0 & 3 & 0 \\ 0 & -2 & 1\end{array}\right)$
(c) $\left(\begin{array}{ccc}2 & 0 & 3 \\ 3 & -1 & 3 \\ 6 & -6 & 2\end{array}\right)$
(d) $\left(\begin{array}{ccc}2 & -8 & -4 \\ 0 & -2 & -2 \\ 0 & 8 & 6\end{array}\right)$
(e) $\left(\begin{array}{ccc}0 & 1 & 0 \\ -1 & 2 & 0 \\ 2 & -3 & 1\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1.
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -|

Mathematical Physics

[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}-3 & 0 & -8 \\ 1 & -2 & 8 \\ 4 & 0 & 9\end{array}\right)$
(b) $\left(\begin{array}{ccc}5 & 0 & 2 \\ 2 & 3 & 2 \\ -4 & 0 & -1\end{array}\right)$
(c) $\left(\begin{array}{ccc}-2 & -6 & 3 \\ 4 & 0 & 5 \\ 2 & 4 & -1\end{array}\right)$
(d) $\left(\begin{array}{ccc}2 & 1 & 2 \\ 1 & 2 & -2 \\ -1 & 1 & 5\end{array}\right)$
(e) $\left(\begin{array}{ccc}2 & -1 & 0 \\ -2 & 1 & -1 \\ 2 & 3 & 3\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1 .
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -|

Mathematical Physics

[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}-3 & 1 & 1 \\ 5 & -3 & -3 \\ -7 & 3 & 3\end{array}\right)$
(b) $\left(\begin{array}{ccc}1 & -1 & 0 \\ 2 & 4 & 0 \\ 4 & 2 & 3\end{array}\right)$
(c) $\left(\begin{array}{ccc}-4 & -8 & -7 \\ 1 & -3 & 1 \\ 3 & 7 & 6\end{array}\right)$
(d) $\left(\begin{array}{ccc}7 & -4 & -2 \\ 4 & -1 & -2 \\ 0 & 0 & 3\end{array}\right)$
(e) $\left(\begin{array}{ccc}-4 & -6 & -3 \\ 8 & 8 & 4 \\ 0 & 3 & 2\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1.
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -|

Mathematical Physics

[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}-3 & 5 & 5 \\ 6 & -4 & 1 \\ -6 & 6 & 1\end{array}\right)$
(b) $\left(\begin{array}{ccc}-3 & 4 & 4 \\ 0 & -3 & 0 \\ 0 & 2 & -1\end{array}\right)$
(c) $\left(\begin{array}{lll}-3 & -2 & 3 \\ -2 & -3 & 3 \\ -4 & -8 & 7\end{array}\right)$
(d) $\left(\begin{array}{ccc}-1 & 2 & 2 \\ -1 & -4 & -1 \\ -1 & -1 & -4\end{array}\right)$
(e) $\left(\begin{array}{ccc}4 & -1 & -1 \\ 2 & -1 & -2 \\ -3 & 7 & 6\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1.
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -|

Mathematical Physics

[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}-3 & 6 & -2 \\ 4 & 2 & 4 \\ 7 & -6 & 6\end{array}\right)$
(b) $\left(\begin{array}{ccc}0 & 0 & 3 \\ -2 & -2 & -3 \\ -2 & 0 & -5\end{array}\right)$
(c) $\left(\begin{array}{ccc}-1 & 0 & 2 \\ 0 & -3 & 6 \\ 0 & -1 & 2\end{array}\right)$
(d) $\left(\begin{array}{ccc}1 & -3 & 6 \\ -1 & -1 & -2 \\ -2 & 2 & -6\end{array}\right)$
(e) $\left(\begin{array}{ccc}2 & 2 & 1 \\ 3 & 0 & -3 \\ -4 & 5 & 7\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1 .
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -|

Mathematical Physics

MM: 20
[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}-2 & -5 & 1 \\ 1 & 4 & -1 \\ -3 & -3 & 2\end{array}\right)$
(b) $\left(\begin{array}{ccc}-7 & 5 & -5 \\ -5 & 3 & -5 \\ 5 & -5 & 3\end{array}\right)$
(c) $\left(\begin{array}{ccc}1 & -1 & 0 \\ -1 & 1 & 1 \\ -1 & -1 & 2\end{array}\right)$
(d) $\left(\begin{array}{ccc}-4 & 2 & -2 \\ 0 & -2 & 0 \\ 2 & -2 & 0\end{array}\right)$
(e) $\left(\begin{array}{ccc}-1 & 1 & 2 \\ 2 & -2 & 5 \\ -2 & -1 & -6\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1.
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -|

Mathematical Physics

[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}-2 & -3 & 1 \\ 5 & 6 & -1 \\ 3 & 3 & 0\end{array}\right)$
(b) $\left(\begin{array}{ccc}1 & 0 & -4 \\ 2 & -3 & -2 \\ 2 & 0 & -5\end{array}\right)$
(c) $\left(\begin{array}{ccc}3 & -1 & -1 \\ 0 & 2 & -1 \\ 1 & -1 & 3\end{array}\right)$
(d) $\left(\begin{array}{ccc}-1 & 1 & 0 \\ -1 & -3 & 0 \\ 1 & 1 & -2\end{array}\right)$
(e) $\left(\begin{array}{ccc}0 & 2 & 4 \\ -1 & 0 & 1 \\ -2 & -2 & -6\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1.
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -|

Mathematical Physics

MM: 20
[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}-2 & -1 & -5 \\ 4 & 3 & 5 \\ -2 & -2 & 4\end{array}\right)$
(b) $\left(\begin{array}{ccc}-5 & 0 & 4 \\ -2 & -1 & 2 \\ -2 & 0 & 1\end{array}\right)$
(c) $\left(\begin{array}{ccc}4 & -1 & -1 \\ -1 & 4 & 1 \\ 4 & -5 & -1\end{array}\right)$
(d) $\left(\begin{array}{ccc}-1 & 2 & -2 \\ 0 & -2 & 1 \\ 0 & -1 & 0\end{array}\right)$
(e) $\left(\begin{array}{lll}-4 & -2 & 6 \\ -4 & -6 & 6 \\ -3 & -3 & 4\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1.
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -|

Mathematical Physics

[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}-2 & 0 & -6 \\ 0 & -2 & 6 \\ 3 & 0 & 7\end{array}\right)$
(b) $\left(\begin{array}{ccc}-6 & -2 & 4 \\ 6 & 1 & -6 \\ -2 & -1 & 0\end{array}\right)$
(c) $\left(\begin{array}{ccc}2 & 0 & 3 \\ 3 & -1 & 3 \\ 6 & -6 & 2\end{array}\right)$
(d) $\left(\begin{array}{ccc}-3 & 4 & 0 \\ -1 & 1 & 0 \\ -2 & 4 & -1\end{array}\right)$
(e) $\left(\begin{array}{lll}-6 & 4 & 4 \\ -2 & 0 & 2 \\ -1 & 0 & 0\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1 .
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -|

Mathematical Physics

[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}-2 & 0 & -6 \\ 3 & 1 & 6 \\ 3 & 3 & 4\end{array}\right)$
(b) $\left(\begin{array}{ccc}-4 & 6 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & -1\end{array}\right)$
(c) $\left(\begin{array}{ccc}-2 & -6 & 3 \\ 4 & 0 & 5 \\ 2 & 4 & -1\end{array}\right)$
(d) $\left(\begin{array}{ccc}-3 & 4 & 0 \\ -1 & 1 & 0 \\ -3 & 6 & -1\end{array}\right)$
(e) $\left(\begin{array}{ccc}4 & 0 & -6 \\ 3 & -2 & -3 \\ 8 & -4 & -8\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1.
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -|

Mathematical Physics

[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}-2 & 0 & -4 \\ -1 & -3 & 4 \\ 2 & 0 & 4\end{array}\right)$
(b) $\left(\begin{array}{ccc}7 & -8 & -4 \\ 0 & -1 & 0 \\ 8 & -8 & -5\end{array}\right)$
(c) $\left(\begin{array}{ccc}-4 & -8 & -7 \\ 1 & -3 & 1 \\ 3 & 7 & 6\end{array}\right)$
(d) $\left(\begin{array}{ccc}-1 & -8 & 4 \\ 0 & -5 & 2 \\ 0 & -8 & 3\end{array}\right)$
(e) $\left(\begin{array}{ccc}2 & -1 & -3 \\ -1 & 0 & 1 \\ 4 & -2 & -5\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1.
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -|

Mathematical Physics

[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{lll}-2 & 0 & 3 \\ -6 & 4 & 3 \\ -2 & 0 & 3\end{array}\right)$
(b) $\left(\begin{array}{ccc}-2 & 1 & -3 \\ 1 & -2 & 3 \\ 1 & -1 & 2\end{array}\right)$
(c) $\left(\begin{array}{lll}-3 & -2 & 3 \\ -2 & -3 & 3 \\ -4 & -8 & 7\end{array}\right)$
(d) $\left(\begin{array}{lll}3 & -4 & 0 \\ 1 & -1 & 0 \\ 2 & -4 & 1\end{array}\right)$
(e) $\left(\begin{array}{ccc}0 & 1 & 0 \\ -1 & 2 & 0 \\ 2 & -3 & 1\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1.
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -|

Mathematical Physics

[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}-2 & 0 & 3 \\ 0 & -2 & 6 \\ -2 & 0 & 3\end{array}\right)$
(b) $\left(\begin{array}{ccc}-1 & -2 & 6 \\ 0 & -3 & 6 \\ 0 & -1 & 2\end{array}\right)$
(c) $\left(\begin{array}{ccc}-1 & 0 & 2 \\ 0 & -3 & 6 \\ 0 & -1 & 2\end{array}\right)$
(d) $\left(\begin{array}{ccc}1 & 0 & 0 \\ 3 & 1 & -6 \\ 0 & 0 & 1\end{array}\right)$
(e) $\left(\begin{array}{ccc}2 & -1 & 0 \\ -2 & 1 & -1 \\ 2 & 3 & 3\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1 .
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -|

Mathematical Physics

[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}-2 & 1 & 1 \\ -2 & 1 & 1 \\ 2 & -2 & -2\end{array}\right)$
(b) $\left(\begin{array}{ccc}-1 & 2 & 0 \\ -1 & 2 & 0 \\ 0 & 0 & 1\end{array}\right)$
(c) $\left(\begin{array}{ccc}1 & -1 & 0 \\ -1 & 1 & 1 \\ -1 & -1 & 2\end{array}\right)$
(d) $\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 3 & -6 & 1\end{array}\right)$
(e) $\left(\begin{array}{ccc}-4 & -6 & -3 \\ 8 & 8 & 4 \\ 0 & 3 & 2\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1.
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -|

Mathematical Physics

[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}-2 & 2 & -6 \\ 2 & -2 & 6 \\ 2 & 2 & 2\end{array}\right)$
(b) $\left(\begin{array}{ccc}-3 & -8 & 8 \\ 0 & 1 & -4 \\ 0 & 0 & -3\end{array}\right)$
(c) $\left(\begin{array}{ccc}3 & -1 & -1 \\ 0 & 2 & -1 \\ 1 & -1 & 3\end{array}\right)$
(d) $\left(\begin{array}{ccc}2 & -8 & -4 \\ 0 & -2 & -2 \\ 0 & 8 & 6\end{array}\right)$
(e) $\left(\begin{array}{ccc}4 & -1 & -1 \\ 2 & -1 & -2 \\ -3 & 7 & 6\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1.
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

MM: 20
[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{lll}-2 & 2 & -2 \\ -5 & 6 & -7 \\ -1 & 2 & -3\end{array}\right)$
(b) $\left(\begin{array}{ccc}1 & -6 & -3 \\ 0 & -1 & -1 \\ 0 & 2 & 2\end{array}\right)$
(c) $\left(\begin{array}{ccc}4 & -1 & -1 \\ -1 & 4 & 1 \\ 4 & -5 & -1\end{array}\right)$
(d) $\left(\begin{array}{ccc}2 & 1 & 2 \\ 1 & 2 & -2 \\ -1 & 1 & 5\end{array}\right)$
(e) $\left(\begin{array}{ccc}2 & 2 & 1 \\ 3 & 0 & -3 \\ -4 & 5 & 7\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1.
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -|

Mathematical Physics

MM: 20
[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}-2 & 3 & 3 \\ 2 & -1 & 1 \\ -4 & 4 & 2\end{array}\right)$
(b) $\left(\begin{array}{ccc}2 & 2 & 0 \\ 0 & 1 & 0 \\ -2 & -4 & 1\end{array}\right)$
(c) $\left(\begin{array}{ccc}2 & 0 & 3 \\ 3 & -1 & 3 \\ 6 & -6 & 2\end{array}\right)$
(d) $\left(\begin{array}{ccc}7 & -4 & -2 \\ 4 & -1 & -2 \\ 0 & 0 & 3\end{array}\right)$
(e) $\left(\begin{array}{ccc}-1 & 1 & 2 \\ 2 & -2 & 5 \\ -2 & -1 & -6\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1.
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

SetId: LVI

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -|

Mathematical Physics

[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}-2 & 3 & 3 \\ 4 & -3 & 0 \\ -6 & 6 & 3\end{array}\right)$
(b) $\left(\begin{array}{ccc}-2 & 4 & 0 \\ 0 & 2 & 0 \\ -4 & 4 & 2\end{array}\right)$
(c) $\left(\begin{array}{ccc}-2 & -6 & 3 \\ 4 & 0 & 5 \\ 2 & 4 & -1\end{array}\right)$
(d) $\left(\begin{array}{ccc}-1 & 2 & 2 \\ -1 & -4 & -1 \\ -1 & -1 & -4\end{array}\right)$
(e) $\left(\begin{array}{ccc}0 & 2 & 4 \\ -1 & 0 & 1 \\ -2 & -2 & -6\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1.
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -|

Mathematical Physics

MM: 20
[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}-1 & -3 & -3 \\ 1 & 3 & 3 \\ 1 & 1 & -1\end{array}\right)$
(b) $\left(\begin{array}{ccc}2 & 0 & 0 \\ 8 & -2 & -4 \\ -4 & 2 & 4\end{array}\right)$
(c) $\left(\begin{array}{ccc}-4 & -8 & -7 \\ 1 & -3 & 1 \\ 3 & 7 & 6\end{array}\right)$
(d) $\left(\begin{array}{ccc}1 & -3 & 6 \\ -1 & -1 & -2 \\ -2 & 2 & -6\end{array}\right)$
(e) $\left(\begin{array}{lll}-4 & -2 & 6 \\ -4 & -6 & 6 \\ -3 & -3 & 4\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1.
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -|

Mathematical Physics

[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}-1 & -3 & 1 \\ 1 & -1 & 1 \\ 1 & 3 & -1\end{array}\right)$
(b) $\left(\begin{array}{ccc}1 & -1 & 0 \\ 0 & 2 & 0 \\ -1 & -1 & 2\end{array}\right)$
(c) $\left(\begin{array}{lll}-3 & -2 & 3 \\ -2 & -3 & 3 \\ -4 & -8 & 7\end{array}\right)$
(d) $\left(\begin{array}{ccc}-4 & 2 & -2 \\ 0 & -2 & 0 \\ 2 & -2 & 0\end{array}\right)$
(e) $\left(\begin{array}{lll}-6 & 4 & 4 \\ -2 & 0 & 2 \\ -1 & 0 & 0\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1.
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -|

Mathematical Physics

[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}-1 & -2 & -4 \\ 3 & 4 & 4 \\ 3 & 3 & 5\end{array}\right)$
(b) $\left(\begin{array}{ccc}6 & -4 & 1 \\ 3 & -1 & 1 \\ 0 & 0 & 3\end{array}\right)$
(c) $\left(\begin{array}{ccc}-1 & 0 & 2 \\ 0 & -3 & 6 \\ 0 & -1 & 2\end{array}\right)$
(d) $\left(\begin{array}{ccc}-1 & 1 & 0 \\ -1 & -3 & 0 \\ 1 & 1 & -2\end{array}\right)$
(e) $\left(\begin{array}{ccc}4 & 0 & -6 \\ 3 & -2 & -3 \\ 8 & -4 & -8\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1.
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -I

Mathematical Physics

MM: 20
[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}-1 & -2 & -2 \\ -1 & -2 & -2 \\ 1 & -1 & -1\end{array}\right)$
(b) $\left(\begin{array}{ccc}3 & -2 & -2 \\ 0 & 3 & 0 \\ 0 & -2 & 1\end{array}\right)$
(c) $\left(\begin{array}{ccc}1 & -1 & 0 \\ -1 & 1 & 1 \\ -1 & -1 & 2\end{array}\right)$
(d) $\left(\begin{array}{ccc}-1 & 2 & -2 \\ 0 & -2 & 1 \\ 0 & -1 & 0\end{array}\right)$
(e) $\left(\begin{array}{ccc}2 & -1 & -3 \\ -1 & 0 & 1 \\ 4 & -2 & -5\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1 .
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -|

Mathematical Physics

[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}-1 & -1 & -3 \\ -3 & -3 & 3 \\ -7 & -7 & 3\end{array}\right)$
(b) $\left(\begin{array}{ccc}5 & 0 & 2 \\ 2 & 3 & 2 \\ -4 & 0 & -1\end{array}\right)$
(c) $\left(\begin{array}{ccc}3 & -1 & -1 \\ 0 & 2 & -1 \\ 1 & -1 & 3\end{array}\right)$
(d) $\left(\begin{array}{ccc}-3 & 4 & 0 \\ -1 & 1 & 0 \\ -2 & 4 & -1\end{array}\right)$
(e) $\left(\begin{array}{ccc}0 & 1 & 0 \\ -1 & 2 & 0 \\ 2 & -3 & 1\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1.
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -|

Mathematical Physics

[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}-1 & -1 & -3 \\ 2 & 2 & 3 \\ 2 & 2 & 3\end{array}\right)$
(b) $\left(\begin{array}{ccc}1 & -1 & 0 \\ 2 & 4 & 0 \\ 4 & 2 & 3\end{array}\right)$
(c) $\left(\begin{array}{ccc}4 & -1 & -1 \\ -1 & 4 & 1 \\ 4 & -5 & -1\end{array}\right)$
(d) $\left(\begin{array}{ccc}-3 & 4 & 0 \\ -1 & 1 & 0 \\ -3 & 6 & -1\end{array}\right)$
(e) $\left(\begin{array}{ccc}2 & -1 & 0 \\ -2 & 1 & -1 \\ 2 & 3 & 3\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1.
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -|

Mathematical Physics

[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}-1 & 0 & -8 \\ 4 & 3 & 8 \\ -4 & -4 & 7\end{array}\right)$
(b) $\left(\begin{array}{ccc}-3 & 4 & 4 \\ 0 & -3 & 0 \\ 0 & 2 & -1\end{array}\right)$
(c) $\left(\begin{array}{ccc}2 & 0 & 3 \\ 3 & -1 & 3 \\ 6 & -6 & 2\end{array}\right)$
(d) $\left(\begin{array}{ccc}-1 & -8 & 4 \\ 0 & -5 & 2 \\ 0 & -8 & 3\end{array}\right)$
(e) $\left(\begin{array}{ccc}-4 & -6 & -3 \\ 8 & 8 & 4 \\ 0 & 3 & 2\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1 .
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -|

Mathematical Physics

[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}-1 & 0 & -6 \\ 3 & 2 & 6 \\ -3 & -3 & 5\end{array}\right)$
(b) $\left(\begin{array}{ccc}0 & 0 & 3 \\ -2 & -2 & -3 \\ -2 & 0 & -5\end{array}\right)$
(c) $\left(\begin{array}{ccc}-2 & -6 & 3 \\ 4 & 0 & 5 \\ 2 & 4 & -1\end{array}\right)$
(d) $\left(\begin{array}{lll}3 & -4 & 0 \\ 1 & -1 & 0 \\ 2 & -4 & 1\end{array}\right)$
(e) $\left(\begin{array}{ccc}4 & -1 & -1 \\ 2 & -1 & -2 \\ -3 & 7 & 6\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1.
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -|

Mathematical Physics

[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}-1 & 0 & -1 \\ 3 & 4 & -3 \\ 6 & 0 & 4\end{array}\right)$
(b) $\left(\begin{array}{ccc}-7 & 5 & -5 \\ -5 & 3 & -5 \\ 5 & -5 & 3\end{array}\right)$
(c) $\left(\begin{array}{ccc}-4 & -8 & -7 \\ 1 & -3 & 1 \\ 3 & 7 & 6\end{array}\right)$
(d) $\left(\begin{array}{ccc}1 & 0 & 0 \\ 3 & 1 & -6 \\ 0 & 0 & 1\end{array}\right)$
(e) $\left(\begin{array}{ccc}2 & 2 & 1 \\ 3 & 0 & -3 \\ -4 & 5 & 7\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1 .
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -|

Mathematical Physics

[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}-1 & 2 & 3 \\ 5 & 2 & 3 \\ -4 & -4 & -6\end{array}\right)$
(b) $\left(\begin{array}{ccc}1 & 0 & -4 \\ 2 & -3 & -2 \\ 2 & 0 & -5\end{array}\right)$
(c) $\left(\begin{array}{lll}-3 & -2 & 3 \\ -2 & -3 & 3 \\ -4 & -8 & 7\end{array}\right)$
(d) $\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 3 & -6 & 1\end{array}\right)$
(e) $\left(\begin{array}{ccc}-1 & 1 & 2 \\ 2 & -2 & 5 \\ -2 & -1 & -6\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1.
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -|

Mathematical Physics

MM: 20
[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}-1 & 3 & -7 \\ -1 & -5 & 7 \\ -5 & -5 & 3\end{array}\right)$
(b) $\left(\begin{array}{ccc}-5 & 0 & 4 \\ -2 & -1 & 2 \\ -2 & 0 & 1\end{array}\right)$
(c) $\left(\begin{array}{ccc}-1 & 0 & 2 \\ 0 & -3 & 6 \\ 0 & -1 & 2\end{array}\right)$
(d) $\left(\begin{array}{ccc}2 & -8 & -4 \\ 0 & -2 & -2 \\ 0 & 8 & 6\end{array}\right)$
(e) $\left(\begin{array}{ccc}0 & 2 & 4 \\ -1 & 0 & 1 \\ -2 & -2 & -6\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1.
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -|

Mathematical Physics

MM: 20
[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}-1 & 3 & -1 \\ 1 & -3 & 1 \\ -1 & -3 & -1\end{array}\right)$
(b) $\left(\begin{array}{ccc}-6 & -2 & 4 \\ 6 & 1 & -6 \\ -2 & -1 & 0\end{array}\right)$
(c) $\left(\begin{array}{ccc}1 & -1 & 0 \\ -1 & 1 & 1 \\ -1 & -1 & 2\end{array}\right)$
(d) $\left(\begin{array}{ccc}2 & 1 & 2 \\ 1 & 2 & -2 \\ -1 & 1 & 5\end{array}\right)$
(e) $\left(\begin{array}{lll}-4 & -2 & 6 \\ -4 & -6 & 6 \\ -3 & -3 & 4\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1.
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -|

Mathematical Physics

[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}-1 & 6 & 1 \\ 0 & 7 & -2 \\ 0 & 6 & 0\end{array}\right)$
(b) $\left(\begin{array}{ccc}-4 & 6 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & -1\end{array}\right)$
(c) $\left(\begin{array}{ccc}3 & -1 & -1 \\ 0 & 2 & -1 \\ 1 & -1 & 3\end{array}\right)$
(d) $\left(\begin{array}{ccc}7 & -4 & -2 \\ 4 & -1 & -2 \\ 0 & 0 & 3\end{array}\right)$
(e) $\left(\begin{array}{lll}-6 & 4 & 4 \\ -2 & 0 & 2 \\ -1 & 0 & 0\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1.
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -|

Mathematical Physics

MM: 20
[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}0 & -6 & 5 \\ -3 & -3 & 5 \\ -2 & -8 & 9\end{array}\right)$
(b) $\left(\begin{array}{ccc}7 & -8 & -4 \\ 0 & -1 & 0 \\ 8 & -8 & -5\end{array}\right)$
(c) $\left(\begin{array}{ccc}4 & -1 & -1 \\ -1 & 4 & 1 \\ 4 & -5 & -1\end{array}\right)$
(d) $\left(\begin{array}{ccc}-1 & 2 & 2 \\ -1 & -4 & -1 \\ -1 & -1 & -4\end{array}\right)$
(e) $\left(\begin{array}{ccc}4 & 0 & -6 \\ 3 & -2 & -3 \\ 8 & -4 & -8\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1 .
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -|

Mathematical Physics

MM: 20
[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}0 & -3 & -3 \\ -1 & -2 & -3 \\ 1 & -1 & 0\end{array}\right)$
(b) $\left(\begin{array}{ccc}-2 & 1 & -3 \\ 1 & -2 & 3 \\ 1 & -1 & 2\end{array}\right)$
(c) $\left(\begin{array}{ccc}2 & 0 & 3 \\ 3 & -1 & 3 \\ 6 & -6 & 2\end{array}\right)$
(d) $\left(\begin{array}{ccc}1 & -3 & 6 \\ -1 & -1 & -2 \\ -2 & 2 & -6\end{array}\right)$
(e) $\left(\begin{array}{ccc}2 & -1 & -3 \\ -1 & 0 & 1 \\ 4 & -2 & -5\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1 .
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -|

Mathematical Physics

[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}0 & -3 & 3 \\ -6 & 4 & -6 \\ -6 & 3 & -5\end{array}\right)$
(b) $\left(\begin{array}{ccc}-1 & -2 & 6 \\ 0 & -3 & 6 \\ 0 & -1 & 2\end{array}\right)$
(c) $\left(\begin{array}{ccc}-2 & -6 & 3 \\ 4 & 0 & 5 \\ 2 & 4 & -1\end{array}\right)$
(d) $\left(\begin{array}{ccc}-4 & 2 & -2 \\ 0 & -2 & 0 \\ 2 & -2 & 0\end{array}\right)$
(e) $\left(\begin{array}{ccc}0 & 1 & 0 \\ -1 & 2 & 0 \\ 2 & -3 & 1\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1.
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -|

Mathematical Physics

[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}0 & -2 & -2 \\ -1 & -1 & -2 \\ 1 & -1 & 0\end{array}\right)$
(b) $\left(\begin{array}{ccc}-1 & 2 & 0 \\ -1 & 2 & 0 \\ 0 & 0 & 1\end{array}\right)$
(c) $\left(\begin{array}{ccc}-4 & -8 & -7 \\ 1 & -3 & 1 \\ 3 & 7 & 6\end{array}\right)$
(d) $\left(\begin{array}{ccc}-1 & 1 & 0 \\ -1 & -3 & 0 \\ 1 & 1 & -2\end{array}\right)$
(e) $\left(\begin{array}{ccc}2 & -1 & 0 \\ -2 & 1 & -1 \\ 2 & 3 & 3\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1.
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -|

Mathematical Physics

[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}0 & 0 & -4 \\ 2 & 0 & 6 \\ 2 & 0 & 6\end{array}\right)$
(b) $\left(\begin{array}{ccc}-3 & -8 & 8 \\ 0 & 1 & -4 \\ 0 & 0 & -3\end{array}\right)$
(c) $\left(\begin{array}{lll}-3 & -2 & 3 \\ -2 & -3 & 3 \\ -4 & -8 & 7\end{array}\right)$
(d) $\left(\begin{array}{ccc}-1 & 2 & -2 \\ 0 & -2 & 1 \\ 0 & -1 & 0\end{array}\right)$
(e) $\left(\begin{array}{ccc}-4 & -6 & -3 \\ 8 & 8 & 4 \\ 0 & 3 & 2\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1.
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -|

Mathematical Physics

[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}0 & 0 & -4 \\ 2 & 2 & 4 \\ 2 & 2 & 4\end{array}\right)$
(b) $\left(\begin{array}{ccc}1 & -6 & -3 \\ 0 & -1 & -1 \\ 0 & 2 & 2\end{array}\right)$
(c) $\left(\begin{array}{ccc}-1 & 0 & 2 \\ 0 & -3 & 6 \\ 0 & -1 & 2\end{array}\right)$
(d) $\left(\begin{array}{ccc}-3 & 4 & 0 \\ -1 & 1 & 0 \\ -2 & 4 & -1\end{array}\right)$
(e) $\left(\begin{array}{ccc}4 & -1 & -1 \\ 2 & -1 & -2 \\ -3 & 7 & 6\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1.
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -|

Mathematical Physics

MM: 20
[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}0 & 1 & -4 \\ -4 & -5 & 4 \\ -7 & -7 & 3\end{array}\right)$
(b) $\left(\begin{array}{ccc}2 & 2 & 0 \\ 0 & 1 & 0 \\ -2 & -4 & 1\end{array}\right)$
(c) $\left(\begin{array}{ccc}1 & -1 & 0 \\ -1 & 1 & 1 \\ -1 & -1 & 2\end{array}\right)$
(d) $\left(\begin{array}{ccc}-3 & 4 & 0 \\ -1 & 1 & 0 \\ -3 & 6 & -1\end{array}\right)$
(e) $\left(\begin{array}{ccc}2 & 2 & 1 \\ 3 & 0 & -3 \\ -4 & 5 & 7\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1.
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -|

Mathematical Physics

MM: 20
[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}0 & 2 & 0 \\ 2 & 1 & 2 \\ 2 & -2 & 2\end{array}\right)$
(b) $\left(\begin{array}{ccc}-2 & 4 & 0 \\ 0 & 2 & 0 \\ -4 & 4 & 2\end{array}\right)$
(c) $\left(\begin{array}{ccc}3 & -1 & -1 \\ 0 & 2 & -1 \\ 1 & -1 & 3\end{array}\right)$
(d) $\left(\begin{array}{ccc}-1 & -8 & 4 \\ 0 & -5 & 2 \\ 0 & -8 & 3\end{array}\right)$
(e) $\left(\begin{array}{ccc}-1 & 1 & 2 \\ 2 & -2 & 5 \\ -2 & -1 & -6\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1 .
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -|

Mathematical Physics

[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}0 & 2 & 7 \\ 0 & 1 & -4 \\ 0 & 2 & 7\end{array}\right)$
(b) $\left(\begin{array}{ccc}2 & 0 & 0 \\ 8 & -2 & -4 \\ -4 & 2 & 4\end{array}\right)$
(c) $\left(\begin{array}{ccc}4 & -1 & -1 \\ -1 & 4 & 1 \\ 4 & -5 & -1\end{array}\right)$
(d) $\left(\begin{array}{lll}3 & -4 & 0 \\ 1 & -1 & 0 \\ 2 & -4 & 1\end{array}\right)$
(e) $\left(\begin{array}{ccc}0 & 2 & 4 \\ -1 & 0 & 1 \\ -2 & -2 & -6\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1.
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -|

Mathematical Physics

[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}0 & 4 & -6 \\ -3 & -7 & 6 \\ -5 & -5 & 2\end{array}\right)$
(b) $\left(\begin{array}{ccc}1 & -1 & 0 \\ 0 & 2 & 0 \\ -1 & -1 & 2\end{array}\right)$
(c) $\left(\begin{array}{ccc}2 & 0 & 3 \\ 3 & -1 & 3 \\ 6 & -6 & 2\end{array}\right)$
(d) $\left(\begin{array}{ccc}1 & 0 & 0 \\ 3 & 1 & -6 \\ 0 & 0 & 1\end{array}\right)$
(e) $\left(\begin{array}{lll}-4 & -2 & 6 \\ -4 & -6 & 6 \\ -3 & -3 & 4\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1.
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -|

Mathematical Physics

[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}0 & 4 & -6 \\ 1 & -3 & 6 \\ 1 & 1 & 2\end{array}\right)$
(b) $\left(\begin{array}{ccc}6 & -4 & 1 \\ 3 & -1 & 1 \\ 0 & 0 & 3\end{array}\right)$
(c) $\left(\begin{array}{ccc}-2 & -6 & 3 \\ 4 & 0 & 5 \\ 2 & 4 & -1\end{array}\right)$
(d) $\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 3 & -6 & 1\end{array}\right)$
(e) $\left(\begin{array}{lll}-6 & 4 & 4 \\ -2 & 0 & 2 \\ -1 & 0 & 0\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1.
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -|

Mathematical Physics

[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}0 & 4 & -4 \\ -6 & -2 & 0 \\ 0 & -8 & 8\end{array}\right)$
(b) $\left(\begin{array}{ccc}3 & -2 & -2 \\ 0 & 3 & 0 \\ 0 & -2 & 1\end{array}\right)$
(c) $\left(\begin{array}{ccc}-4 & -8 & -7 \\ 1 & -3 & 1 \\ 3 & 7 & 6\end{array}\right)$
(d) $\left(\begin{array}{ccc}2 & -8 & -4 \\ 0 & -2 & -2 \\ 0 & 8 & 6\end{array}\right)$
(e) $\left(\begin{array}{ccc}4 & 0 & -6 \\ 3 & -2 & -3 \\ 8 & -4 & -8\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1.
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -I

Mathematical Physics

MM: 20
[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}1 & -2 & 0 \\ -3 & 0 & -3 \\ 2 & 2 & 3\end{array}\right)$
(b) $\left(\begin{array}{ccc}5 & 0 & 2 \\ 2 & 3 & 2 \\ -4 & 0 & -1\end{array}\right)$
(c) $\left(\begin{array}{lll}-3 & -2 & 3 \\ -2 & -3 & 3 \\ -4 & -8 & 7\end{array}\right)$
(d) $\left(\begin{array}{ccc}2 & 1 & 2 \\ 1 & 2 & -2 \\ -1 & 1 & 5\end{array}\right)$
(e) $\left(\begin{array}{ccc}2 & -1 & -3 \\ -1 & 0 & 1 \\ 4 & -2 & -5\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1 .
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -I

Mathematical Physics

MM: 20
[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}1 & -1 & 1 \\ 5 & -3 & 1 \\ 3 & -1 & -1\end{array}\right)$
(b) $\left(\begin{array}{ccc}1 & -1 & 0 \\ 2 & 4 & 0 \\ 4 & 2 & 3\end{array}\right)$
(c) $\left(\begin{array}{ccc}-1 & 0 & 2 \\ 0 & -3 & 6 \\ 0 & -1 & 2\end{array}\right)$
(d) $\left(\begin{array}{ccc}7 & -4 & -2 \\ 4 & -1 & -2 \\ 0 & 0 & 3\end{array}\right)$
(e) $\left(\begin{array}{ccc}0 & 1 & 0 \\ -1 & 2 & 0 \\ 2 & -3 & 1\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1 .
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -|

Mathematical Physics

MM: 20
[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}1 & -1 & 2 \\ 0 & 2 & -2 \\ 1 & 1 & 0\end{array}\right)$
(b) $\left(\begin{array}{ccc}-3 & 4 & 4 \\ 0 & -3 & 0 \\ 0 & 2 & -1\end{array}\right)$
(c) $\left(\begin{array}{ccc}1 & -1 & 0 \\ -1 & 1 & 1 \\ -1 & -1 & 2\end{array}\right)$
(d) $\left(\begin{array}{ccc}-1 & 2 & 2 \\ -1 & -4 & -1 \\ -1 & -1 & -4\end{array}\right)$
(e) $\left(\begin{array}{ccc}2 & -1 & 0 \\ -2 & 1 & -1 \\ 2 & 3 & 3\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1 .
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -|

Mathematical Physics

MM: 20
[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}1 & 0 & -4 \\ 2 & 3 & 4 \\ 2 & 2 & 5\end{array}\right)$
(b) $\left(\begin{array}{ccc}0 & 0 & 3 \\ -2 & -2 & -3 \\ -2 & 0 & -5\end{array}\right)$
(c) $\left(\begin{array}{ccc}3 & -1 & -1 \\ 0 & 2 & -1 \\ 1 & -1 & 3\end{array}\right)$
(d) $\left(\begin{array}{ccc}1 & -3 & 6 \\ -1 & -1 & -2 \\ -2 & 2 & -6\end{array}\right)$
(e) $\left(\begin{array}{ccc}-4 & -6 & -3 \\ 8 & 8 & 4 \\ 0 & 3 & 2\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1.
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -|

Mathematical Physics

MM: 20
[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}1 & 0 & -2 \\ 1 & 0 & 4 \\ 1 & 0 & 4\end{array}\right)$
(b) $\left(\begin{array}{ccc}-7 & 5 & -5 \\ -5 & 3 & -5 \\ 5 & -5 & 3\end{array}\right)$
(c) $\left(\begin{array}{ccc}4 & -1 & -1 \\ -1 & 4 & 1 \\ 4 & -5 & -1\end{array}\right)$
(d) $\left(\begin{array}{ccc}-4 & 2 & -2 \\ 0 & -2 & 0 \\ 2 & -2 & 0\end{array}\right)$
(e) $\left(\begin{array}{ccc}4 & -1 & -1 \\ 2 & -1 & -2 \\ -3 & 7 & 6\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1 .
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -|

Mathematical Physics

MM: 20
[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}1 & 0 & 6 \\ -6 & -5 & -6 \\ 6 & 6 & -2\end{array}\right)$
(b) $\left(\begin{array}{ccc}1 & 0 & -4 \\ 2 & -3 & -2 \\ 2 & 0 & -5\end{array}\right)$
(c) $\left(\begin{array}{ccc}2 & 0 & 3 \\ 3 & -1 & 3 \\ 6 & -6 & 2\end{array}\right)$
(d) $\left(\begin{array}{ccc}-1 & 1 & 0 \\ -1 & -3 & 0 \\ 1 & 1 & -2\end{array}\right)$
(e) $\left(\begin{array}{ccc}2 & 2 & 1 \\ 3 & 0 & -3 \\ -4 & 5 & 7\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1.
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -|

Mathematical Physics

[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}1 & 1 & -3 \\ 0 & 0 & 3 \\ -2 & -2 & 3\end{array}\right)$
(b) $\left(\begin{array}{ccc}-5 & 0 & 4 \\ -2 & -1 & 2 \\ -2 & 0 & 1\end{array}\right)$
(c) $\left(\begin{array}{ccc}-2 & -6 & 3 \\ 4 & 0 & 5 \\ 2 & 4 & -1\end{array}\right)$
(d) $\left(\begin{array}{ccc}-1 & 2 & -2 \\ 0 & -2 & 1 \\ 0 & -1 & 0\end{array}\right)$
(e) $\left(\begin{array}{ccc}-1 & 1 & 2 \\ 2 & -2 & 5 \\ -2 & -1 & -6\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1.
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -I

Mathematical Physics

[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}1 & 1 & -3 \\ 1 & 1 & 3 \\ 1 & 1 & 3\end{array}\right)$
(b) $\left(\begin{array}{ccc}-6 & -2 & 4 \\ 6 & 1 & -6 \\ -2 & -1 & 0\end{array}\right)$
(c) $\left(\begin{array}{ccc}-4 & -8 & -7 \\ 1 & -3 & 1 \\ 3 & 7 & 6\end{array}\right)$
(d) $\left(\begin{array}{ccc}-3 & 4 & 0 \\ -1 & 1 & 0 \\ -2 & 4 & -1\end{array}\right)$
(e) $\left(\begin{array}{ccc}0 & 2 & 4 \\ -1 & 0 & 1 \\ -2 & -2 & -6\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1 .
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -|

Mathematical Physics

[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}1 & 1 & -1 \\ -1 & -1 & 1 \\ 5 & -1 & -5\end{array}\right)$
(b) $\left(\begin{array}{ccc}-4 & 6 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & -1\end{array}\right)$
(c) $\left(\begin{array}{lll}-3 & -2 & 3 \\ -2 & -3 & 3 \\ -4 & -8 & 7\end{array}\right)$
(d) $\left(\begin{array}{ccc}-3 & 4 & 0 \\ -1 & 1 & 0 \\ -3 & 6 & -1\end{array}\right)$
(e) $\left(\begin{array}{lll}-4 & -2 & 6 \\ -4 & -6 & 6 \\ -3 & -3 & 4\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1.
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -|

Mathematical Physics

[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}1 & 1 & 1 \\ 0 & -3 & -6 \\ -2 & 1 & 4\end{array}\right)$
(b) $\left(\begin{array}{ccc}7 & -8 & -4 \\ 0 & -1 & 0 \\ 8 & -8 & -5\end{array}\right)$
(c) $\left(\begin{array}{ccc}-1 & 0 & 2 \\ 0 & -3 & 6 \\ 0 & -1 & 2\end{array}\right)$
(d) $\left(\begin{array}{ccc}-1 & -8 & 4 \\ 0 & -5 & 2 \\ 0 & -8 & 3\end{array}\right)$
(e) $\left(\begin{array}{lll}-6 & 4 & 4 \\ -2 & 0 & 2 \\ -1 & 0 & 0\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1.
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -|

Mathematical Physics

MM: 20
[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}1 & 2 & -8 \\ 1 & 0 & 8 \\ -5 & -5 & 7\end{array}\right)$
(b) $\left(\begin{array}{ccc}-2 & 1 & -3 \\ 1 & -2 & 3 \\ 1 & -1 & 2\end{array}\right)$
(c) $\left(\begin{array}{ccc}1 & -1 & 0 \\ -1 & 1 & 1 \\ -1 & -1 & 2\end{array}\right)$
(d) $\left(\begin{array}{lll}3 & -4 & 0 \\ 1 & -1 & 0 \\ 2 & -4 & 1\end{array}\right)$
(e) $\left(\begin{array}{ccc}4 & 0 & -6 \\ 3 & -2 & -3 \\ 8 & -4 & -8\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1.
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -I

Mathematical Physics

MM: 20
[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}1 & 2 & -2 \\ -3 & 9 & -9 \\ 1 & 2 & -2\end{array}\right)$
(b) $\left(\begin{array}{ccc}-1 & -2 & 6 \\ 0 & -3 & 6 \\ 0 & -1 & 2\end{array}\right)$
(c) $\left(\begin{array}{ccc}3 & -1 & -1 \\ 0 & 2 & -1 \\ 1 & -1 & 3\end{array}\right)$
(d) $\left(\begin{array}{ccc}1 & 0 & 0 \\ 3 & 1 & -6 \\ 0 & 0 & 1\end{array}\right)$
(e) $\left(\begin{array}{ccc}2 & -1 & -3 \\ -1 & 0 & 1 \\ 4 & -2 & -5\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1 .
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -|

Mathematical Physics

[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}1 & 2 & 3 \\ 0 & -6 & -6 \\ 0 & 4 & 4\end{array}\right)$
(b) $\left(\begin{array}{ccc}-1 & 2 & 0 \\ -1 & 2 & 0 \\ 0 & 0 & 1\end{array}\right)$
(c) $\left(\begin{array}{ccc}4 & -1 & -1 \\ -1 & 4 & 1 \\ 4 & -5 & -1\end{array}\right)$
(d) $\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 3 & -6 & 1\end{array}\right)$
(e) $\left(\begin{array}{ccc}0 & 1 & 0 \\ -1 & 2 & 0 \\ 2 & -3 & 1\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1.
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -|

Mathematical Physics

[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}1 & 3 & 3 \\ -9 & 1 & -3 \\ 9 & -3 & 1\end{array}\right)$
(b) $\left(\begin{array}{ccc}-3 & -8 & 8 \\ 0 & 1 & -4 \\ 0 & 0 & -3\end{array}\right)$
(c) $\left(\begin{array}{ccc}2 & 0 & 3 \\ 3 & -1 & 3 \\ 6 & -6 & 2\end{array}\right)$
(d) $\left(\begin{array}{ccc}2 & -8 & -4 \\ 0 & -2 & -2 \\ 0 & 8 & 6\end{array}\right)$
(e) $\left(\begin{array}{ccc}2 & -1 & 0 \\ -2 & 1 & -1 \\ 2 & 3 & 3\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1.
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -|

Mathematical Physics

[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}1 & 4 & 2 \\ -4 & 6 & -4 \\ -1 & -2 & -2\end{array}\right)$
(b) $\left(\begin{array}{ccc}1 & -6 & -3 \\ 0 & -1 & -1 \\ 0 & 2 & 2\end{array}\right)$
(c) $\left(\begin{array}{ccc}-2 & -6 & 3 \\ 4 & 0 & 5 \\ 2 & 4 & -1\end{array}\right)$
(d) $\left(\begin{array}{ccc}2 & 1 & 2 \\ 1 & 2 & -2 \\ -1 & 1 & 5\end{array}\right)$
(e) $\left(\begin{array}{ccc}-4 & -6 & -3 \\ 8 & 8 & 4 \\ 0 & 3 & 2\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1.
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -I

Mathematical Physics

MM: 20
[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{lll}2 & -5 & 3 \\ 1 & -4 & 3 \\ 3 & -9 & 6\end{array}\right)$
(b) $\left(\begin{array}{ccc}2 & 2 & 0 \\ 0 & 1 & 0 \\ -2 & -4 & 1\end{array}\right)$
(c) $\left(\begin{array}{ccc}-4 & -8 & -7 \\ 1 & -3 & 1 \\ 3 & 7 & 6\end{array}\right)$
(d) $\left(\begin{array}{ccc}7 & -4 & -2 \\ 4 & -1 & -2 \\ 0 & 0 & 3\end{array}\right)$
(e) $\left(\begin{array}{ccc}4 & -1 & -1 \\ 2 & -1 & -2 \\ -3 & 7 & 6\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1 .
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -|

Mathematical Physics

[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}2 & -4 & -3 \\ -4 & 8 & 6 \\ 2 & -8 & -5\end{array}\right)$
(b) $\left(\begin{array}{ccc}-2 & 4 & 0 \\ 0 & 2 & 0 \\ -4 & 4 & 2\end{array}\right)$
(c) $\left(\begin{array}{lll}-3 & -2 & 3 \\ -2 & -3 & 3 \\ -4 & -8 & 7\end{array}\right)$
(d) $\left(\begin{array}{ccc}-1 & 2 & 2 \\ -1 & -4 & -1 \\ -1 & -1 & -4\end{array}\right)$
(e) $\left(\begin{array}{ccc}2 & 2 & 1 \\ 3 & 0 & -3 \\ -4 & 5 & 7\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1 .
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -|

Mathematical Physics

[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}2 & -4 & -2 \\ -1 & 1 & -2 \\ 0 & 2 & 3\end{array}\right)$
(b) $\left(\begin{array}{ccc}2 & 0 & 0 \\ 8 & -2 & -4 \\ -4 & 2 & 4\end{array}\right)$
(c) $\left(\begin{array}{ccc}-1 & 0 & 2 \\ 0 & -3 & 6 \\ 0 & -1 & 2\end{array}\right)$
(d) $\left(\begin{array}{ccc}1 & -3 & 6 \\ -1 & -1 & -2 \\ -2 & 2 & -6\end{array}\right)$
(e) $\left(\begin{array}{ccc}-1 & 1 & 2 \\ 2 & -2 & 5 \\ -2 & -1 & -6\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1.
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -|

Mathematical Physics

MM: 20
[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}2 & -4 & -1 \\ -5 & 1 & -5 \\ 4 & 4 & 7\end{array}\right)$
(b) $\left(\begin{array}{ccc}1 & -1 & 0 \\ 0 & 2 & 0 \\ -1 & -1 & 2\end{array}\right)$
(c) $\left(\begin{array}{ccc}1 & -1 & 0 \\ -1 & 1 & 1 \\ -1 & -1 & 2\end{array}\right)$
(d) $\left(\begin{array}{ccc}-4 & 2 & -2 \\ 0 & -2 & 0 \\ 2 & -2 & 0\end{array}\right)$
(e) $\left(\begin{array}{ccc}0 & 2 & 4 \\ -1 & 0 & 1 \\ -2 & -2 & -6\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1 .
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -|

Mathematical Physics

[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}2 & -3 & 1 \\ -2 & 5 & -2 \\ -2 & 6 & -1\end{array}\right)$
(b) $\left(\begin{array}{ccc}6 & -4 & 1 \\ 3 & -1 & 1 \\ 0 & 0 & 3\end{array}\right)$
(c) $\left(\begin{array}{ccc}3 & -1 & -1 \\ 0 & 2 & -1 \\ 1 & -1 & 3\end{array}\right)$
(d) $\left(\begin{array}{ccc}-1 & 1 & 0 \\ -1 & -3 & 0 \\ 1 & 1 & -2\end{array}\right)$
(e) $\left(\begin{array}{lll}-4 & -2 & 6 \\ -4 & -6 & 6 \\ -3 & -3 & 4\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1.
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -|

Mathematical Physics

MM: 20
[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}2 & -2 & -2 \\ -3 & -3 & -6 \\ 7 & -1 & 2\end{array}\right)$
(b) $\left(\begin{array}{ccc}3 & -2 & -2 \\ 0 & 3 & 0 \\ 0 & -2 & 1\end{array}\right)$
(c) $\left(\begin{array}{ccc}4 & -1 & -1 \\ -1 & 4 & 1 \\ 4 & -5 & -1\end{array}\right)$
(d) $\left(\begin{array}{ccc}-1 & 2 & -2 \\ 0 & -2 & 1 \\ 0 & -1 & 0\end{array}\right)$
(e) $\left(\begin{array}{lll}-6 & 4 & 4 \\ -2 & 0 & 2 \\ -1 & 0 & 0\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1 .
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -|

Mathematical Physics

[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}2 & -2 & 1 \\ -4 & 0 & -4 \\ 2 & 2 & 3\end{array}\right)$
(b) $\left(\begin{array}{ccc}5 & 0 & 2 \\ 2 & 3 & 2 \\ -4 & 0 & -1\end{array}\right)$
(c) $\left(\begin{array}{ccc}2 & 0 & 3 \\ 3 & -1 & 3 \\ 6 & -6 & 2\end{array}\right)$
(d) $\left(\begin{array}{ccc}-3 & 4 & 0 \\ -1 & 1 & 0 \\ -2 & 4 & -1\end{array}\right)$
(e) $\left(\begin{array}{ccc}4 & 0 & -6 \\ 3 & -2 & -3 \\ 8 & -4 & -8\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1.
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -|

Mathematical Physics

[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}2 & 0 & -2 \\ -4 & -2 & 2 \\ 1 & 0 & 5\end{array}\right)$
(b) $\left(\begin{array}{ccc}1 & -1 & 0 \\ 2 & 4 & 0 \\ 4 & 2 & 3\end{array}\right)$
(c) $\left(\begin{array}{ccc}-2 & -6 & 3 \\ 4 & 0 & 5 \\ 2 & 4 & -1\end{array}\right)$
(d) $\left(\begin{array}{ccc}-3 & 4 & 0 \\ -1 & 1 & 0 \\ -3 & 6 & -1\end{array}\right)$
(e) $\left(\begin{array}{ccc}2 & -1 & -3 \\ -1 & 0 & 1 \\ 4 & -2 & -5\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1.
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -|

Mathematical Physics

[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}2 & 2 & 2 \\ -6 & 2 & -2 \\ 6 & -2 & 2\end{array}\right)$
(b) $\left(\begin{array}{ccc}-3 & 4 & 4 \\ 0 & -3 & 0 \\ 0 & 2 & -1\end{array}\right)$
(c) $\left(\begin{array}{ccc}-4 & -8 & -7 \\ 1 & -3 & 1 \\ 3 & 7 & 6\end{array}\right)$
(d) $\left(\begin{array}{ccc}-1 & -8 & 4 \\ 0 & -5 & 2 \\ 0 & -8 & 3\end{array}\right)$
(e) $\left(\begin{array}{ccc}0 & 1 & 0 \\ -1 & 2 & 0 \\ 2 & -3 & 1\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1.
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -|

Mathematical Physics

[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}2 & 2 & 2 \\ -5 & -6 & -7 \\ 1 & 2 & 3\end{array}\right)$
(b) $\left(\begin{array}{ccc}0 & 0 & 3 \\ -2 & -2 & -3 \\ -2 & 0 & -5\end{array}\right)$
(c) $\left(\begin{array}{lll}-3 & -2 & 3 \\ -2 & -3 & 3 \\ -4 & -8 & 7\end{array}\right)$
(d) $\left(\begin{array}{lll}3 & -4 & 0 \\ 1 & -1 & 0 \\ 2 & -4 & 1\end{array}\right)$
(e) $\left(\begin{array}{ccc}2 & -1 & 0 \\ -2 & 1 & -1 \\ 2 & 3 & 3\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1 .
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -I

Mathematical Physics

MM: 20
[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}2 & 2 & 2 \\ 4 & 1 & 4 \\ 1 & -2 & 1\end{array}\right)$
(b) $\left(\begin{array}{ccc}-7 & 5 & -5 \\ -5 & 3 & -5 \\ 5 & -5 & 3\end{array}\right)$
(c) $\left(\begin{array}{ccc}-1 & 0 & 2 \\ 0 & -3 & 6 \\ 0 & -1 & 2\end{array}\right)$
(d) $\left(\begin{array}{ccc}1 & 0 & 0 \\ 3 & 1 & -6 \\ 0 & 0 & 1\end{array}\right)$
(e) $\left(\begin{array}{ccc}-4 & -6 & -3 \\ 8 & 8 & 4 \\ 0 & 3 & 2\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1 .
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -|

Mathematical Physics

MM: 20
[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}2 & 3 & 1 \\ -2 & -3 & -1 \\ -4 & -4 & -2\end{array}\right)$
(b) $\left(\begin{array}{ccc}1 & 0 & -4 \\ 2 & -3 & -2 \\ 2 & 0 & -5\end{array}\right)$
(c) $\left(\begin{array}{ccc}1 & -1 & 0 \\ -1 & 1 & 1 \\ -1 & -1 & 2\end{array}\right)$
(d) $\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 3 & -6 & 1\end{array}\right)$
(e) $\left(\begin{array}{ccc}4 & -1 & -1 \\ 2 & -1 & -2 \\ -3 & 7 & 6\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1.
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -I

Mathematical Physics

MM: 20
[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}2 & 3 & 1 \\ 3 & 4 & -3 \\ 7 & 9 & -4\end{array}\right)$
(b) $\left(\begin{array}{ccc}-5 & 0 & 4 \\ -2 & -1 & 2 \\ -2 & 0 & 1\end{array}\right)$
(c) $\left(\begin{array}{ccc}3 & -1 & -1 \\ 0 & 2 & -1 \\ 1 & -1 & 3\end{array}\right)$
(d) $\left(\begin{array}{ccc}2 & -8 & -4 \\ 0 & -2 & -2 \\ 0 & 8 & 6\end{array}\right)$
(e) $\left(\begin{array}{ccc}2 & 2 & 1 \\ 3 & 0 & -3 \\ -4 & 5 & 7\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1 .
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -|

Mathematical Physics

MM: 20
[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}2 & 3 & 3 \\ -3 & 4 & 1 \\ 3 & -5 & -2\end{array}\right)$
(b) $\left(\begin{array}{ccc}-6 & -2 & 4 \\ 6 & 1 & -6 \\ -2 & -1 & 0\end{array}\right)$
(c) $\left(\begin{array}{ccc}4 & -1 & -1 \\ -1 & 4 & 1 \\ 4 & -5 & -1\end{array}\right)$
(d) $\left(\begin{array}{ccc}2 & 1 & 2 \\ 1 & 2 & -2 \\ -1 & 1 & 5\end{array}\right)$
(e) $\left(\begin{array}{ccc}-1 & 1 & 2 \\ 2 & -2 & 5 \\ -2 & -1 & -6\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1.
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -|

Mathematical Physics

[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}2 & 3 & 3 \\ -2 & -3 & -2 \\ -6 & -6 & 5\end{array}\right)$
(b) $\left(\begin{array}{ccc}-4 & 6 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & -1\end{array}\right)$
(c) $\left(\begin{array}{ccc}2 & 0 & 3 \\ 3 & -1 & 3 \\ 6 & -6 & 2\end{array}\right)$
(d) $\left(\begin{array}{ccc}7 & -4 & -2 \\ 4 & -1 & -2 \\ 0 & 0 & 3\end{array}\right)$
(e) $\left(\begin{array}{ccc}0 & 2 & 4 \\ -1 & 0 & 1 \\ -2 & -2 & -6\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1.
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -|

Mathematical Physics

[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}3 & -6 & 0 \\ -1 & 0 & -2 \\ -1 & 3 & 1\end{array}\right)$
(b) $\left(\begin{array}{ccc}7 & -8 & -4 \\ 0 & -1 & 0 \\ 8 & -8 & -5\end{array}\right)$
(c) $\left(\begin{array}{ccc}-2 & -6 & 3 \\ 4 & 0 & 5 \\ 2 & 4 & -1\end{array}\right)$
(d) $\left(\begin{array}{ccc}-1 & 2 & 2 \\ -1 & -4 & -1 \\ -1 & -1 & -4\end{array}\right)$
(e) $\left(\begin{array}{lll}-4 & -2 & 6 \\ -4 & -6 & 6 \\ -3 & -3 & 4\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1.
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -|

Mathematical Physics

[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{lll}3 & -1 & 1 \\ 5 & -1 & 1 \\ 3 & -1 & 1\end{array}\right)$
(b) $\left(\begin{array}{ccc}-2 & 1 & -3 \\ 1 & -2 & 3 \\ 1 & -1 & 2\end{array}\right)$
(c) $\left(\begin{array}{ccc}-4 & -8 & -7 \\ 1 & -3 & 1 \\ 3 & 7 & 6\end{array}\right)$
(d) $\left(\begin{array}{ccc}1 & -3 & 6 \\ -1 & -1 & -2 \\ -2 & 2 & -6\end{array}\right)$
(e) $\left(\begin{array}{lll}-6 & 4 & 4 \\ -2 & 0 & 2 \\ -1 & 0 & 0\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1.
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -|

Mathematical Physics

[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}3 & 0 & -6 \\ -1 & -1 & 1 \\ 1 & -2 & -4\end{array}\right)$
(b) $\left(\begin{array}{ccc}-1 & -2 & 6 \\ 0 & -3 & 6 \\ 0 & -1 & 2\end{array}\right)$
(c) $\left(\begin{array}{lll}-3 & -2 & 3 \\ -2 & -3 & 3 \\ -4 & -8 & 7\end{array}\right)$
(d) $\left(\begin{array}{ccc}-4 & 2 & -2 \\ 0 & -2 & 0 \\ 2 & -2 & 0\end{array}\right)$
(e) $\left(\begin{array}{ccc}4 & 0 & -6 \\ 3 & -2 & -3 \\ 8 & -4 & -8\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1.
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -|

Mathematical Physics

[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}3 & 0 & -3 \\ -6 & 6 & -6 \\ 2 & 0 & -2\end{array}\right)$
(b) $\left(\begin{array}{ccc}-1 & 2 & 0 \\ -1 & 2 & 0 \\ 0 & 0 & 1\end{array}\right)$
(c) $\left(\begin{array}{ccc}-1 & 0 & 2 \\ 0 & -3 & 6 \\ 0 & -1 & 2\end{array}\right)$
(d) $\left(\begin{array}{ccc}-1 & 1 & 0 \\ -1 & -3 & 0 \\ 1 & 1 & -2\end{array}\right)$
(e) $\left(\begin{array}{ccc}2 & -1 & -3 \\ -1 & 0 & 1 \\ 4 & -2 & -5\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1.
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -|

Mathematical Physics

[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}3 & 0 & 2 \\ 6 & -1 & 0 \\ -3 & 2 & 4\end{array}\right)$
(b) $\left(\begin{array}{ccc}-3 & -8 & 8 \\ 0 & 1 & -4 \\ 0 & 0 & -3\end{array}\right)$
(c) $\left(\begin{array}{ccc}1 & -1 & 0 \\ -1 & 1 & 1 \\ -1 & -1 & 2\end{array}\right)$
(d) $\left(\begin{array}{ccc}-1 & 2 & -2 \\ 0 & -2 & 1 \\ 0 & -1 & 0\end{array}\right)$
(e) $\left(\begin{array}{ccc}0 & 1 & 0 \\ -1 & 2 & 0 \\ 2 & -3 & 1\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1.
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -|

Mathematical Physics

MM: 20
[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}3 & 1 & 2 \\ -2 & 0 & -2 \\ -5 & -1 & -4\end{array}\right)$
(b) $\left(\begin{array}{ccc}1 & -6 & -3 \\ 0 & -1 & -1 \\ 0 & 2 & 2\end{array}\right)$
(c) $\left(\begin{array}{ccc}3 & -1 & -1 \\ 0 & 2 & -1 \\ 1 & -1 & 3\end{array}\right)$
(d) $\left(\begin{array}{ccc}-3 & 4 & 0 \\ -1 & 1 & 0 \\ -2 & 4 & -1\end{array}\right)$
(e) $\left(\begin{array}{ccc}2 & -1 & 0 \\ -2 & 1 & -1 \\ 2 & 3 & 3\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1.
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -|

Mathematical Physics

[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{lll}3 & 2 & -2 \\ 6 & 6 & -6 \\ 6 & 4 & -4\end{array}\right)$
(b) $\left(\begin{array}{ccc}2 & 2 & 0 \\ 0 & 1 & 0 \\ -2 & -4 & 1\end{array}\right)$
(c) $\left(\begin{array}{ccc}4 & -1 & -1 \\ -1 & 4 & 1 \\ 4 & -5 & -1\end{array}\right)$
(d) $\left(\begin{array}{ccc}-3 & 4 & 0 \\ -1 & 1 & 0 \\ -3 & 6 & -1\end{array}\right)$
(e) $\left(\begin{array}{ccc}-4 & -6 & -3 \\ 8 & 8 & 4 \\ 0 & 3 & 2\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1.
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -|

Mathematical Physics

[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}3 & 2 & 6 \\ -2 & 3 & -2 \\ -3 & -1 & -6\end{array}\right)$
(b) $\left(\begin{array}{ccc}-2 & 4 & 0 \\ 0 & 2 & 0 \\ -4 & 4 & 2\end{array}\right)$
(c) $\left(\begin{array}{ccc}2 & 0 & 3 \\ 3 & -1 & 3 \\ 6 & -6 & 2\end{array}\right)$
(d) $\left(\begin{array}{ccc}-1 & -8 & 4 \\ 0 & -5 & 2 \\ 0 & -8 & 3\end{array}\right)$
(e) $\left(\begin{array}{ccc}4 & -1 & -1 \\ 2 & -1 & -2 \\ -3 & 7 & 6\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1.
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -|

Mathematical Physics

[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}3 & 3 & -5 \\ -2 & -2 & 5 \\ -4 & -4 & 5\end{array}\right)$
(b) $\left(\begin{array}{ccc}2 & 0 & 0 \\ 8 & -2 & -4 \\ -4 & 2 & 4\end{array}\right)$
(c) $\left(\begin{array}{ccc}-2 & -6 & 3 \\ 4 & 0 & 5 \\ 2 & 4 & -1\end{array}\right)$
(d) $\left(\begin{array}{lll}3 & -4 & 0 \\ 1 & -1 & 0 \\ 2 & -4 & 1\end{array}\right)$
(e) $\left(\begin{array}{ccc}2 & 2 & 1 \\ 3 & 0 & -3 \\ -4 & 5 & 7\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1.
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -|

Mathematical Physics

[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}3 & 6 & 3 \\ -4 & -7 & -2 \\ -6 & -6 & 4\end{array}\right)$
(b) $\left(\begin{array}{ccc}1 & -1 & 0 \\ 0 & 2 & 0 \\ -1 & -1 & 2\end{array}\right)$
(c) $\left(\begin{array}{ccc}-4 & -8 & -7 \\ 1 & -3 & 1 \\ 3 & 7 & 6\end{array}\right)$
(d) $\left(\begin{array}{ccc}1 & 0 & 0 \\ 3 & 1 & -6 \\ 0 & 0 & 1\end{array}\right)$
(e) $\left(\begin{array}{ccc}-1 & 1 & 2 \\ 2 & -2 & 5 \\ -2 & -1 & -6\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1.
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -|

Mathematical Physics

[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}4 & -7 & -7 \\ 4 & -7 & -7 \\ -4 & 4 & 4\end{array}\right)$
(b) $\left(\begin{array}{ccc}6 & -4 & 1 \\ 3 & -1 & 1 \\ 0 & 0 & 3\end{array}\right)$
(c) $\left(\begin{array}{lll}-3 & -2 & 3 \\ -2 & -3 & 3 \\ -4 & -8 & 7\end{array}\right)$
(d) $\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 3 & -6 & 1\end{array}\right)$
(e) $\left(\begin{array}{ccc}0 & 2 & 4 \\ -1 & 0 & 1 \\ -2 & -2 & -6\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1.
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -|

Mathematical Physics

MM: 20
[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}4 & -2 & 2 \\ -5 & 1 & -5 \\ 2 & 2 & 4\end{array}\right)$
(b) $\left(\begin{array}{ccc}3 & -2 & -2 \\ 0 & 3 & 0 \\ 0 & -2 & 1\end{array}\right)$
(c) $\left(\begin{array}{ccc}-1 & 0 & 2 \\ 0 & -3 & 6 \\ 0 & -1 & 2\end{array}\right)$
(d) $\left(\begin{array}{ccc}2 & -8 & -4 \\ 0 & -2 & -2 \\ 0 & 8 & 6\end{array}\right)$
(e) $\left(\begin{array}{lll}-4 & -2 & 6 \\ -4 & -6 & 6 \\ -3 & -3 & 4\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1.
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -|

Mathematical Physics

MM: 20
[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}4 & 0 & 2 \\ -4 & 0 & -2 \\ -1 & 0 & 1\end{array}\right)$
(b) $\left(\begin{array}{ccc}5 & 0 & 2 \\ 2 & 3 & 2 \\ -4 & 0 & -1\end{array}\right)$
(c) $\left(\begin{array}{ccc}1 & -1 & 0 \\ -1 & 1 & 1 \\ -1 & -1 & 2\end{array}\right)$
(d) $\left(\begin{array}{ccc}2 & 1 & 2 \\ 1 & 2 & -2 \\ -1 & 1 & 5\end{array}\right)$
(e) $\left(\begin{array}{lll}-6 & 4 & 4 \\ -2 & 0 & 2 \\ -1 & 0 & 0\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1 .
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -|

Mathematical Physics

[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}4 & 0 & 2 \\ -1 & -1 & 2 \\ -1 & 0 & 1\end{array}\right)$
(b) $\left(\begin{array}{ccc}1 & -1 & 0 \\ 2 & 4 & 0 \\ 4 & 2 & 3\end{array}\right)$
(c) $\left(\begin{array}{ccc}3 & -1 & -1 \\ 0 & 2 & -1 \\ 1 & -1 & 3\end{array}\right)$
(d) $\left(\begin{array}{ccc}7 & -4 & -2 \\ 4 & -1 & -2 \\ 0 & 0 & 3\end{array}\right)$
(e) $\left(\begin{array}{ccc}4 & 0 & -6 \\ 3 & -2 & -3 \\ 8 & -4 & -8\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1.
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -|

Mathematical Physics

[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}4 & 0 & 6 \\ -6 & -7 & 4 \\ -3 & 0 & -5\end{array}\right)$
(b) $\left(\begin{array}{ccc}-3 & 4 & 4 \\ 0 & -3 & 0 \\ 0 & 2 & -1\end{array}\right)$
(c) $\left(\begin{array}{ccc}4 & -1 & -1 \\ -1 & 4 & 1 \\ 4 & -5 & -1\end{array}\right)$
(d) $\left(\begin{array}{ccc}-1 & 2 & 2 \\ -1 & -4 & -1 \\ -1 & -1 & -4\end{array}\right)$
(e) $\left(\begin{array}{ccc}2 & -1 & -3 \\ -1 & 0 & 1 \\ 4 & -2 & -5\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1.
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -|

Mathematical Physics

MM: 20
[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}4 & 0 & 6 \\ -2 & 2 & -7 \\ -2 & 0 & -3\end{array}\right)$
(b) $\left(\begin{array}{ccc}0 & 0 & 3 \\ -2 & -2 & -3 \\ -2 & 0 & -5\end{array}\right)$
(c) $\left(\begin{array}{ccc}2 & 0 & 3 \\ 3 & -1 & 3 \\ 6 & -6 & 2\end{array}\right)$
(d) $\left(\begin{array}{ccc}1 & -3 & 6 \\ -1 & -1 & -2 \\ -2 & 2 & -6\end{array}\right)$
(e) $\left(\begin{array}{ccc}0 & 1 & 0 \\ -1 & 2 & 0 \\ 2 & -3 & 1\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1.
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -|

Mathematical Physics

[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}4 & 0 & 6 \\ 6 & 6 & -3 \\ -2 & 0 & -3\end{array}\right)$
(b) $\left(\begin{array}{ccc}-7 & 5 & -5 \\ -5 & 3 & -5 \\ 5 & -5 & 3\end{array}\right)$
(c) $\left(\begin{array}{ccc}-2 & -6 & 3 \\ 4 & 0 & 5 \\ 2 & 4 & -1\end{array}\right)$
(d) $\left(\begin{array}{ccc}-4 & 2 & -2 \\ 0 & -2 & 0 \\ 2 & -2 & 0\end{array}\right)$
(e) $\left(\begin{array}{ccc}2 & -1 & 0 \\ -2 & 1 & -1 \\ 2 & 3 & 3\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1.
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -|

Mathematical Physics

[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}4 & 0 & 6 \\ 8 & 7 & -2 \\ -2 & 0 & -3\end{array}\right)$
(b) $\left(\begin{array}{ccc}1 & 0 & -4 \\ 2 & -3 & -2 \\ 2 & 0 & -5\end{array}\right)$
(c) $\left(\begin{array}{ccc}-4 & -8 & -7 \\ 1 & -3 & 1 \\ 3 & 7 & 6\end{array}\right)$
(d) $\left(\begin{array}{ccc}-1 & 1 & 0 \\ -1 & -3 & 0 \\ 1 & 1 & -2\end{array}\right)$
(e) $\left(\begin{array}{ccc}-4 & -6 & -3 \\ 8 & 8 & 4 \\ 0 & 3 & 2\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1.
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -I

Mathematical Physics

MM: 20
[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}4 & 4 & 1 \\ -1 & -1 & -1 \\ -6 & -4 & -3\end{array}\right)$
(b) $\left(\begin{array}{ccc}-5 & 0 & 4 \\ -2 & -1 & 2 \\ -2 & 0 & 1\end{array}\right)$
(c) $\left(\begin{array}{lll}-3 & -2 & 3 \\ -2 & -3 & 3 \\ -4 & -8 & 7\end{array}\right)$
(d) $\left(\begin{array}{ccc}-1 & 2 & -2 \\ 0 & -2 & 1 \\ 0 & -1 & 0\end{array}\right)$
(e) $\left(\begin{array}{ccc}4 & -1 & -1 \\ 2 & -1 & -2 \\ -3 & 7 & 6\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1 .
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -|

Mathematical Physics

[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}4 & 5 & -3 \\ -1 & -2 & 3 \\ -1 & -1 & 2\end{array}\right)$
(b) $\left(\begin{array}{ccc}-6 & -2 & 4 \\ 6 & 1 & -6 \\ -2 & -1 & 0\end{array}\right)$
(c) $\left(\begin{array}{ccc}-1 & 0 & 2 \\ 0 & -3 & 6 \\ 0 & -1 & 2\end{array}\right)$
(d) $\left(\begin{array}{ccc}-3 & 4 & 0 \\ -1 & 1 & 0 \\ -2 & 4 & -1\end{array}\right)$
(e) $\left(\begin{array}{ccc}2 & 2 & 1 \\ 3 & 0 & -3 \\ -4 & 5 & 7\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1.
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -|

Mathematical Physics

MM: 20
[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}5 & -8 & 2 \\ -1 & 0 & -2 \\ -2 & 4 & 0\end{array}\right)$
(b) $\left(\begin{array}{ccc}-4 & 6 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & -1\end{array}\right)$
(c) $\left(\begin{array}{ccc}1 & -1 & 0 \\ -1 & 1 & 1 \\ -1 & -1 & 2\end{array}\right)$
(d) $\left(\begin{array}{ccc}-3 & 4 & 0 \\ -1 & 1 & 0 \\ -3 & 6 & -1\end{array}\right)$
(e) $\left(\begin{array}{ccc}-1 & 1 & 2 \\ 2 & -2 & 5 \\ -2 & -1 & -6\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1 .
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -|

Mathematical Physics

[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}5 & -7 & -7 \\ 4 & -6 & -7 \\ -4 & 4 & 5\end{array}\right)$
(b) $\left(\begin{array}{ccc}7 & -8 & -4 \\ 0 & -1 & 0 \\ 8 & -8 & -5\end{array}\right)$
(c) $\left(\begin{array}{ccc}3 & -1 & -1 \\ 0 & 2 & -1 \\ 1 & -1 & 3\end{array}\right)$
(d) $\left(\begin{array}{ccc}-1 & -8 & 4 \\ 0 & -5 & 2 \\ 0 & -8 & 3\end{array}\right)$
(e) $\left(\begin{array}{ccc}0 & 2 & 4 \\ -1 & 0 & 1 \\ -2 & -2 & -6\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1.
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -|

Mathematical Physics

[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}5 & -6 & -6 \\ 3 & -4 & -6 \\ -3 & 3 & 5\end{array}\right)$
(b) $\left(\begin{array}{ccc}-2 & 1 & -3 \\ 1 & -2 & 3 \\ 1 & -1 & 2\end{array}\right)$
(c) $\left(\begin{array}{ccc}4 & -1 & -1 \\ -1 & 4 & 1 \\ 4 & -5 & -1\end{array}\right)$
(d) $\left(\begin{array}{lll}3 & -4 & 0 \\ 1 & -1 & 0 \\ 2 & -4 & 1\end{array}\right)$
(e) $\left(\begin{array}{lll}-4 & -2 & 6 \\ -4 & -6 & 6 \\ -3 & -3 & 4\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1.
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -|

Mathematical Physics

[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}5 & -3 & 3 \\ -1 & 3 & -3 \\ -3 & 3 & -3\end{array}\right)$
(b) $\left(\begin{array}{ccc}-1 & -2 & 6 \\ 0 & -3 & 6 \\ 0 & -1 & 2\end{array}\right)$
(c) $\left(\begin{array}{ccc}2 & 0 & 3 \\ 3 & -1 & 3 \\ 6 & -6 & 2\end{array}\right)$
(d) $\left(\begin{array}{ccc}1 & 0 & 0 \\ 3 & 1 & -6 \\ 0 & 0 & 1\end{array}\right)$
(e) $\left(\begin{array}{lll}-6 & 4 & 4 \\ -2 & 0 & 2 \\ -1 & 0 & 0\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1.
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -|

Mathematical Physics

[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}5 & 0 & -6 \\ -1 & 1 & 1 \\ 1 & -2 & -2\end{array}\right)$
(b) $\left(\begin{array}{ccc}-1 & 2 & 0 \\ -1 & 2 & 0 \\ 0 & 0 & 1\end{array}\right)$
(c) $\left(\begin{array}{ccc}-2 & -6 & 3 \\ 4 & 0 & 5 \\ 2 & 4 & -1\end{array}\right)$
(d) $\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 3 & -6 & 1\end{array}\right)$
(e) $\left(\begin{array}{ccc}4 & 0 & -6 \\ 3 & -2 & -3 \\ 8 & -4 & -8\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1.
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -|

Mathematical Physics

[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}5 & 0 & 4 \\ -2 & 0 & -1 \\ -2 & 0 & -1\end{array}\right)$
(b) $\left(\begin{array}{ccc}-3 & -8 & 8 \\ 0 & 1 & -4 \\ 0 & 0 & -3\end{array}\right)$
(c) $\left(\begin{array}{ccc}-4 & -8 & -7 \\ 1 & -3 & 1 \\ 3 & 7 & 6\end{array}\right)$
(d) $\left(\begin{array}{ccc}2 & -8 & -4 \\ 0 & -2 & -2 \\ 0 & 8 & 6\end{array}\right)$
(e) $\left(\begin{array}{ccc}2 & -1 & -3 \\ -1 & 0 & 1 \\ 4 & -2 & -5\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1.
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -I

Mathematical Physics

MM: 20
[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}5 & 0 & 6 \\ -6 & -7 & 6 \\ -3 & 0 & -4\end{array}\right)$
(b) $\left(\begin{array}{ccc}1 & -6 & -3 \\ 0 & -1 & -1 \\ 0 & 2 & 2\end{array}\right)$
(c) $\left(\begin{array}{lll}-3 & -2 & 3 \\ -2 & -3 & 3 \\ -4 & -8 & 7\end{array}\right)$
(d) $\left(\begin{array}{ccc}2 & 1 & 2 \\ 1 & 2 & -2 \\ -1 & 1 & 5\end{array}\right)$
(e) $\left(\begin{array}{ccc}0 & 1 & 0 \\ -1 & 2 & 0 \\ 2 & -3 & 1\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1 .
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -I

Mathematical Physics

MM: 20
[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}5 & 0 & 6 \\ -3 & -3 & -1 \\ -3 & 0 & -4\end{array}\right)$
(b) $\left(\begin{array}{ccc}2 & 2 & 0 \\ 0 & 1 & 0 \\ -2 & -4 & 1\end{array}\right)$
(c) $\left(\begin{array}{ccc}-1 & 0 & 2 \\ 0 & -3 & 6 \\ 0 & -1 & 2\end{array}\right)$
(d) $\left(\begin{array}{ccc}7 & -4 & -2 \\ 4 & -1 & -2 \\ 0 & 0 & 3\end{array}\right)$
(e) $\left(\begin{array}{ccc}2 & -1 & 0 \\ -2 & 1 & -1 \\ 2 & 3 & 3\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1 .
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -|

Mathematical Physics

MM: 20
[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}5 & 1 & 2 \\ -2 & 2 & -2 \\ -5 & -1 & -2\end{array}\right)$
(b) $\left(\begin{array}{ccc}-2 & 4 & 0 \\ 0 & 2 & 0 \\ -4 & 4 & 2\end{array}\right)$
(c) $\left(\begin{array}{ccc}1 & -1 & 0 \\ -1 & 1 & 1 \\ -1 & -1 & 2\end{array}\right)$
(d) $\left(\begin{array}{ccc}-1 & 2 & 2 \\ -1 & -4 & -1 \\ -1 & -1 & -4\end{array}\right)$
(e) $\left(\begin{array}{ccc}-4 & -6 & -3 \\ 8 & 8 & 4 \\ 0 & 3 & 2\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1.
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -|

Mathematical Physics

MM: 20
[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}5 & 2 & -6 \\ -4 & -2 & 4 \\ 2 & 2 & 0\end{array}\right)$
(b) $\left(\begin{array}{ccc}2 & 0 & 0 \\ 8 & -2 & -4 \\ -4 & 2 & 4\end{array}\right)$
(c) $\left(\begin{array}{ccc}3 & -1 & -1 \\ 0 & 2 & -1 \\ 1 & -1 & 3\end{array}\right)$
(d) $\left(\begin{array}{ccc}1 & -3 & 6 \\ -1 & -1 & -2 \\ -2 & 2 & -6\end{array}\right)$
(e) $\left(\begin{array}{ccc}4 & -1 & -1 \\ 2 & -1 & -2 \\ -3 & 7 & 6\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1.
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -|

Mathematical Physics

[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}5 & 2 & 0 \\ -7 & -1 & 3 \\ 5 & 2 & 0\end{array}\right)$
(b) $\left(\begin{array}{ccc}1 & -1 & 0 \\ 0 & 2 & 0 \\ -1 & -1 & 2\end{array}\right)$
(c) $\left(\begin{array}{ccc}4 & -1 & -1 \\ -1 & 4 & 1 \\ 4 & -5 & -1\end{array}\right)$
(d) $\left(\begin{array}{ccc}-4 & 2 & -2 \\ 0 & -2 & 0 \\ 2 & -2 & 0\end{array}\right)$
(e) $\left(\begin{array}{ccc}2 & 2 & 1 \\ 3 & 0 & -3 \\ -4 & 5 & 7\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1.
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -|

Mathematical Physics

MM: 20
[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}5 & 2 & 2 \\ -2 & 1 & 1 \\ -2 & -2 & -2\end{array}\right)$
(b) $\left(\begin{array}{ccc}6 & -4 & 1 \\ 3 & -1 & 1 \\ 0 & 0 & 3\end{array}\right)$
(c) $\left(\begin{array}{ccc}2 & 0 & 3 \\ 3 & -1 & 3 \\ 6 & -6 & 2\end{array}\right)$
(d) $\left(\begin{array}{ccc}-1 & 1 & 0 \\ -1 & -3 & 0 \\ 1 & 1 & -2\end{array}\right)$
(e) $\left(\begin{array}{ccc}-1 & 1 & 2 \\ 2 & -2 & 5 \\ -2 & -1 & -6\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1 .
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -|

Mathematical Physics

[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}6 & -7 & -1 \\ 4 & -4 & -2 \\ 2 & -3 & 1\end{array}\right)$
(b) $\left(\begin{array}{ccc}3 & -2 & -2 \\ 0 & 3 & 0 \\ 0 & -2 & 1\end{array}\right)$
(c) $\left(\begin{array}{ccc}-2 & -6 & 3 \\ 4 & 0 & 5 \\ 2 & 4 & -1\end{array}\right)$
(d) $\left(\begin{array}{ccc}-1 & 2 & -2 \\ 0 & -2 & 1 \\ 0 & -1 & 0\end{array}\right)$
(e) $\left(\begin{array}{ccc}0 & 2 & 4 \\ -1 & 0 & 1 \\ -2 & -2 & -6\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1.
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -|

Mathematical Physics

[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}6 & 0 & -6 \\ 7 & -1 & -6 \\ 4 & 0 & -4\end{array}\right)$
(b) $\left(\begin{array}{ccc}5 & 0 & 2 \\ 2 & 3 & 2 \\ -4 & 0 & -1\end{array}\right)$
(c) $\left(\begin{array}{ccc}-4 & -8 & -7 \\ 1 & -3 & 1 \\ 3 & 7 & 6\end{array}\right)$
(d) $\left(\begin{array}{ccc}-3 & 4 & 0 \\ -1 & 1 & 0 \\ -2 & 4 & -1\end{array}\right)$
(e) $\left(\begin{array}{lll}-4 & -2 & 6 \\ -4 & -6 & 6 \\ -3 & -3 & 4\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1.
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -|

Mathematical Physics

[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}6 & 0 & 1 \\ -3 & 1 & -3 \\ -6 & 0 & 1\end{array}\right)$
(b) $\left(\begin{array}{ccc}1 & -1 & 0 \\ 2 & 4 & 0 \\ 4 & 2 & 3\end{array}\right)$
(c) $\left(\begin{array}{lll}-3 & -2 & 3 \\ -2 & -3 & 3 \\ -4 & -8 & 7\end{array}\right)$
(d) $\left(\begin{array}{ccc}-3 & 4 & 0 \\ -1 & 1 & 0 \\ -3 & 6 & -1\end{array}\right)$
(e) $\left(\begin{array}{lll}-6 & 4 & 4 \\ -2 & 0 & 2 \\ -1 & 0 & 0\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1.
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -|

Mathematical Physics

[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}6 & 6 & 0 \\ -2 & -2 & -2 \\ 1 & 1 & 1\end{array}\right)$
(b) $\left(\begin{array}{ccc}-3 & 4 & 4 \\ 0 & -3 & 0 \\ 0 & 2 & -1\end{array}\right)$
(c) $\left(\begin{array}{ccc}-1 & 0 & 2 \\ 0 & -3 & 6 \\ 0 & -1 & 2\end{array}\right)$
(d) $\left(\begin{array}{ccc}-1 & -8 & 4 \\ 0 & -5 & 2 \\ 0 & -8 & 3\end{array}\right)$
(e) $\left(\begin{array}{ccc}4 & 0 & -6 \\ 3 & -2 & -3 \\ 8 & -4 & -8\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1.
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -|

Mathematical Physics

MM: 20
[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}7 & -7 & -7 \\ 6 & -6 & -7 \\ -6 & 6 & 7\end{array}\right)$
(b) $\left(\begin{array}{ccc}0 & 0 & 3 \\ -2 & -2 & -3 \\ -2 & 0 & -5\end{array}\right)$
(c) $\left(\begin{array}{ccc}1 & -1 & 0 \\ -1 & 1 & 1 \\ -1 & -1 & 2\end{array}\right)$
(d) $\left(\begin{array}{lll}3 & -4 & 0 \\ 1 & -1 & 0 \\ 2 & -4 & 1\end{array}\right)$
(e) $\left(\begin{array}{ccc}2 & -1 & -3 \\ -1 & 0 & 1 \\ 4 & -2 & -5\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1 .
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

Indian Institute of Technology, Bhubaneswar
 School of Basic Sciences Department of Physics

M.Sc. Ist Semester 2015-16

A. K. Kapoor
email:akkhcu@gmail.com (Due on August 5, 2015)

Assignment -|

Mathematical Physics

[1] Find eigenvalues and normalized eigenvectors of the following matrices and verify the following statements.

- The first matrix has three distinct eigenvalues.
- The second matrix has two distinct characteristic roots and three linearly independent eigenvectors.
- the third matrix has two different eigenvalues and only two linearly independent eigenvectors.
- All the three eigenvalues of the fourth matrix are equal and it has only two linearly independent eigenvectors.
- All the three eigenvalues of the fifth matrix are equal and it has only one linearly independent eigenvector.
(a) $\left(\begin{array}{ccc}7 & -6 & 6 \\ -1 & 2 & -4 \\ -5 & 5 & -7\end{array}\right)$
(b) $\left(\begin{array}{ccc}-7 & 5 & -5 \\ -5 & 3 & -5 \\ 5 & -5 & 3\end{array}\right)$
(c) $\left(\begin{array}{ccc}3 & -1 & -1 \\ 0 & 2 & -1 \\ 1 & -1 & 3\end{array}\right)$
(d) $\left(\begin{array}{ccc}1 & 0 & 0 \\ 3 & 1 & -6 \\ 0 & 0 & 1\end{array}\right)$
(e) $\left(\begin{array}{ccc}0 & 1 & 0 \\ -1 & 2 & 0 \\ 2 & -3 & 1\end{array}\right)$
[2] Give an example of a 3×3 matrix which has three linearly independent eigenvectors and all three eigenvectors correspond to eigenvalue 1.
[3] Which of the above five matrices can be diagonalized? Give reasons to support your answer.

[1] Answers for Set No: I

(a) The eigenvalues are $\{-2,1,0\}$ and the eigenvector(s) are

$$
\{-2,\{3,-2,1\}\} \quad\{1,\{1,-1,1\}\} \quad\{0,\{-1,1,0\}\}
$$

(b) The eigenvalues are $\{-3,-3,-1\}$ and the eigenvector(s) are

$$
\{-3,\{0,-1,1\}\} \quad\{-3,\{1,0,0\}\} \quad\{-1,\{2,0,1\}\}
$$

(c) The eigenvalues are $\{-2,-2,1\}$ and the eigenvector(s) are

$$
\{-2,\{-3,1,2\}\} \quad\{1,\{-1,1,1\}\}
$$

(d) The eigenvalues are $\{-3,-3,-3\}$ and the eigenvector(s) are

$$
\{-3,\{-1,0,1\}\} \quad\{-3,\{-1,1,0\}\}
$$

(e) The eigenvalues are $\{-3,-3,-3\}$ and the eigenvector(s) are

$$
\{-3,\{-1,2,0\}\}
$$

Click Here to Go Back To Questions

[2] Answers for Set No: II

(a) The eigenvalues are $\{6,1,0\}$ and the eigenvector(s) are

$$
\{6,\{1,-1,1\}\} \quad\{1,\{-1,2,1\}\} \quad\{0,\{-1,1,0\}\}
$$

(b) The eigenvalues are $\{-3,-2,-2\}$ and the eigenvector(s) are

$$
\{-3,\{-1,1,1\}\} \quad\{-2,\{-3,0,2\}\} \quad\{-2,\{0,1,0\}\}
$$

(c) The eigenvalues are $\{3,-2,-2\}$ and the eigenvector(s) are

$$
\{3,\{-1,0,1\}\} \quad\{-2,\{-3,-1,2\}\}
$$

(d) The eigenvalues are $\{-2,-2,-2\}$ and the eigenvector(s) are

$$
\{-2,\{-2,0,1\}\} \quad\{-2,\{1,1,0\}\}
$$

(e) The eigenvalues are $\{-2,-2,-2\}$ and the eigenvector(s) are

$$
\{-2,\{-1,-1,1\}\}
$$

[3] Answers for Set No: III

(a) The eigenvalues are $\{3,2,1\}$ and the eigenvector(s) are

$$
\{3,\{-3,2,2\}\} \quad\{2,\{-1,0,1\}\} \quad\{1,\{-3,1,2\}\}
$$

(b) The eigenvalues are $\{3,-2,-2\}$ and the eigenvector(s) are

$$
\{3,\{-1,-1,1\}\} \quad\{-2,\{-1,0,1\}\} \quad\{-2,\{1,1,0\}\}
$$

(c) The eigenvalues are $\{-1,1,1\}$ and the eigenvector(s) are

$$
\{-1,\{2,1,2\}\} \quad\{1,\{1,1,2\}\}
$$

(d) The eigenvalues are $\{-2,-2,-2\}$ and the eigenvector(s) are

$$
\{-2,\{-1,0,1\}\} \quad\{-2,\{1,1,0\}\}
$$

(e) The eigenvalues are $\{-2,-2,-2\}$ and the eigenvector(s) are

$$
\{-2,\{-1,1,0\}\}
$$

[4] Answers for Set No: IV

(a) The eigenvalues are $\{-5,-3,0\}$ and the eigenvector(s) are

$$
\{-5,\{-5,-3,4\}\} \quad\{-3,\{-2,-1,2\}\} \quad\{0,\{-1,0,1\}\}
$$

(b) The eigenvalues are $\{-3,-3,-1\}$ and the eigenvector(s) are

$$
\{-3,\{1,0,1\}\} \quad\{-3,\{0,1,0\}\} \quad\{-1,\{2,1,1\}\}
$$

(c) The eigenvalues are $\{-1,-1,0\}$ and the eigenvector(s) are

$$
\{-1,\{1,0,0\}\} \quad\{0,\{2,2,1\}\}
$$

(d) The eigenvalues are $\{-2,-2,-2\}$ and the eigenvector(s) are

$$
\{-2,\{0,0,1\}\} \quad\{-2,\{-1,1,0\}\}
$$

(e) The eigenvalues are $\{-2,-2,-2\}$ and the eigenvector(s) are

$$
\{-2,\{2,1,1\}\}
$$

[5] Answers for Set No: V

(a) The eigenvalues are $\{4,-1,0\}$ and the eigenvector(s) are

$$
\{4,\{1,-1,1\}\} \quad\{-1,\{-1,1,0\}\} \quad\{0,\{-1,2,1\}\}
$$

(b) The eigenvalues are $\{-3,-1,-1\}$ and the eigenvector(s) are

$$
\{-3,\{2,1,1\}\} \quad\{-1,\{1,0,1\}\} \quad\{-1,\{0,1,0\}\}
$$

(c) The eigenvalues are $\{2,1,1\}$ and the eigenvector(s) are

$$
\{2,\{-1,1,0\}\} \quad\{1,\{1,0,1\}\}
$$

(d) The eigenvalues are $\{-1,-1,-1\}$ and the eigenvector(s) are

$$
\{-1,\{0,1,1\}\} \quad\{-1,\{1,0,0\}\}
$$

(e) The eigenvalues are $\{-2,-2,-2\}$ and the eigenvector(s) are

$$
\{-2,\{2,1,2\}\}
$$

[6] Answers for Set No: VI

(a) The eigenvalues are $\{-4,1,0\}$ and the eigenvector(s) are

$$
\{-4,\{-1,1,0\}\} \quad\{1,\{-1,1,1\}\} \quad\{0,\{-2,3,1\}\}
$$

(b) The eigenvalues are $\{-2,-2,-1\}$ and the eigenvector(s) are

$$
\{-2,\{1,0,1\}\} \quad\{-2,\{-1,2,0\}\} \quad\{-1,\{2,-3,1\}\}
$$

(c) The eigenvalues are $\{3,3,2\}$ and the eigenvector(s) are

$$
\{3,\{-1,-1,1\}\} \quad\{2,\{1,1,0\}\}
$$

(d) The eigenvalues are $\{-1,-1,-1\}$ and the eigenvector(s) are

$$
\{-1,\{0,0,1\}\} \quad\{-1,\{2,1,0\}\}
$$

(e) The eigenvalues are $\{-1,-1,-1\}$ and the eigenvector(s) are

$$
\{-1,\{1,0,1\}\}
$$

[7] Answers for Set No: VII

(a) The eigenvalues are $\{7,2,1\}$ and the eigenvector(s) are

$$
\{7,\{1,-1,1\}\} \quad\{2,\{-1,1,0\}\} \quad\{1,\{3,-2,1\}\}
$$

(b) The eigenvalues are $\{-2,-1,-1\}$ and the eigenvector(s) are

$$
\{-2,\{3,1,0\}\} \quad\{-1,\{0,0,1\}\} \quad\{-1,\{2,1,0\}\}
$$

(c) The eigenvalues are $\{3,2,2\}$ and the eigenvector(s) are

$$
\{3,\{1,0,1\}\} \quad\{2,\{1,-1,3\}\}
$$

(d) The eigenvalues are $\{-1,-1,-1\}$ and the eigenvector(s) are

$$
\{-1,\{0,0,1\}\} \quad\{-1,\{2,1,0\}\}
$$

(e) The eigenvalues are $\{1,1,1\}$ and the eigenvector(s) are

$$
\{1,\{0,0,1\}\}
$$

[8] Answers for Set No: VIII

(a) The eigenvalues are $\{3,-1,0\}$ and the eigenvector(s) are

$$
\{3,\{1,-1,1\}\} \quad\{-1,\{3,-2,1\}\} \quad\{0,\{-1,1,0\}\}
$$

(b) The eigenvalues are $\{3,-1,-1\}$ and the eigenvector(s) are

$$
\{3,\{1,0,1\}\} \quad\{-1,\{1,0,2\}\} \quad\{-1,\{1,1,0\}\}
$$

(c) The eigenvalues are $\{2,2,-1\}$ and the eigenvector(s) are

$$
\{2,\{1,1,0\}\} \quad\{-1,\{-2,-1,2\}\}
$$

(d) The eigenvalues are $\{-1,-1,-1\}$ and the eigenvector(s) are

$$
\{-1,\{0,1,2\}\} \quad\{-1,\{1,0,0\}\}
$$

(e) The eigenvalues are $\{2,2,2\}$ and the eigenvector(s) are

$$
\{2,\{-1,0,2\}\}
$$

[9] Answers for Set No: IX

(a) The eigenvalues are $\{3,-1,0\}$ and the eigenvector(s) are

$$
\{3,\{1,-1,1\}\} \quad\{-1,\{-1,1,0\}\} \quad\{0,\{-1,2,1\}\}
$$

(b) The eigenvalues are $\{-1,-1,0\}$ and the eigenvector(s) are

$$
\{-1,\{-3,0,1\}\} \quad\{-1,\{1,1,0\}\} \quad\{0,\{-1,1,1\}\}
$$

(c) The eigenvalues are $\{-2,-2,1\}$ and the eigenvector(s) are

$$
\{-2,\{-3,1,2\}\} \quad\{1,\{-1,1,1\}\}
$$

(d) The eigenvalues are $\{1,1,1\}$ and the eigenvector(s) are

$$
\{1,\{0,0,1\}\} \quad\{1,\{2,1,0\}\}
$$

(e) The eigenvalues are $\{2,2,2\}$ and the eigenvector(s) are

$$
\{2,\{-1,0,2\}\}
$$

[10] Answers for Set No: X

(a) The eigenvalues are $\{-4,-3,0\}$ and the eigenvector(s) are

$$
\{-4,\{-1,0,1\}\} \quad\{-3,\{-2,1,3\}\} \quad\{0,\{0,1,0\}\}
$$

(b) The eigenvalues are $\{-1,-1,0\}$ and the eigenvector(s) are

$$
\{-1,\{0,3,1\}\} \quad\{-1,\{1,0,0\}\} \quad\{0,\{2,2,1\}\}
$$

(c) The eigenvalues are $\{3,-2,-2\}$ and the eigenvector(s) are

$$
\{3,\{-1,0,1\}\} \quad\{-2,\{-3,-1,2\}\}
$$

(d) The eigenvalues are $\{1,1,1\}$ and the eigenvector(s) are

$$
\{1,\{2,0,1\}\} \quad\{1,\{0,1,0\}\}
$$

(e) The eigenvalues are $\{3,3,3\}$ and the eigenvector(s) are

$$
\{3,\{1,0,1\}\}
$$

[11] Answers for Set No: XI

(a) The eigenvalues are $\{2,-1,0\}$ and the eigenvector(s) are

$$
\{2,\{-2,-2,1\}\} \quad\{-1,\{1,1,0\}\} \quad\{0,\{-7,-6,2\}\}
$$

(b) The eigenvalues are $\{1,1,0\}$ and the eigenvector(s) are

$$
\{1,\{0,0,1\}\} \quad\{1,\{1,1,0\}\} \quad\{0,\{2,1,0\}\}
$$

(c) The eigenvalues are $\{-1,1,1\}$ and the eigenvector(s) are

$$
\{-1,\{2,1,2\}\} \quad\{1,\{1,1,2\}\}
$$

(d) The eigenvalues are $\{1,1,1\}$ and the eigenvector(s) are

$$
\{1,\{0,0,1\}\} \quad\{1,\{2,1,0\}\}
$$

(e) The eigenvalues are $\{3,3,3\}$ and the eigenvector(s) are

$$
\{3,\{1,0,1\}\}
$$

[12] Answers for Set No: XII

(a) The eigenvalues are $\{5,1,0\}$ and the eigenvector(s) are

$$
\{5,\{-2,-2,1\}\} \quad\{1,\{-2,-1,1\}\} \quad\{0,\{-1,0,1\}\}
$$

(b) The eigenvalues are $\{-3,-3,1\}$ and the eigenvector(s) are

$$
\{-3,\{0,1,1\}\} \quad\{-3,\{1,0,0\}\} \quad\{1,\{-2,1,0\}\}
$$

(c) The eigenvalues are $\{-1,-1,0\}$ and the eigenvector(s) are

$$
\{-1,\{1,0,0\}\} \quad\{0,\{2,2,1\}\}
$$

(d) The eigenvalues are $\{2,2,2\}$ and the eigenvector(s) are

$$
\{2,\{0,-1,2\}\} \quad\{2,\{1,0,0\}\}
$$

(e) The eigenvalues are $\{-3,-3,-3\}$ and the eigenvector(s) are

$$
\{-3,\{-1,2,0\}\}
$$

[13] Answers for Set No: XIII

(a) The eigenvalues are $\{4,-3,2\}$ and the eigenvector(s) are

$$
\{4,\{-1,1,0\}\} \quad\{-3,\{1,0,1\}\} \quad\{2,\{-1,1,1\}\}
$$

(b) The eigenvalues are $\{1,1,0\}$ and the eigenvector(s) are

$$
\{1,\{0,-1,2\}\} \quad\{1,\{1,0,0\}\} \quad\{0,\{-3,-1,1\}\}
$$

(c) The eigenvalues are $\{2,1,1\}$ and the eigenvector(s) are

$$
\{2,\{-1,1,0\}\} \quad\{1,\{1,0,1\}\}
$$

(d) The eigenvalues are $\{3,3,3\}$ and the eigenvector(s) are

$$
\{3,\{2,0,1\}\} \quad\{3,\{1,1,0\}\}
$$

(e) The eigenvalues are $\{-2,-2,-2\}$ and the eigenvector(s) are

$$
\{-2,\{-1,-1,1\}\}
$$

Click Here to Go Back To Questions

[14] Answers for Set No: XIV

(a) The eigenvalues are $\{3,2,0\}$ and the eigenvector(s) are

$$
\{3,\{1,-1,1\}\} \quad\{2,\{-1,1,0\}\} \quad\{0,\{3,-2,1\}\}
$$

(b) The eigenvalues are $\{2,1,1\}$ and the eigenvector(s) are

$$
\{2,\{-1,0,2\}\} \quad\{1,\{0,0,1\}\} \quad\{1,\{-2,1,0\}\}
$$

(c) The eigenvalues are $\{3,3,2\}$ and the eigenvector(s) are

$$
\{3,\{-1,-1,1\}\} \quad\{2,\{1,1,0\}\}
$$

(d) The eigenvalues are $\{3,3,3\}$ and the eigenvector(s) are

$$
\{3,\{1,0,2\}\} \quad\{3,\{1,1,0\}\}
$$

(e) The eigenvalues are $\{-2,-2,-2\}$ and the eigenvector(s) are

$$
\{-2,\{-1,1,0\}\}
$$

[15] Answers for Set No: XV

(a) The eigenvalues are $\{-5,-3,1\}$ and the eigenvector(s) are

$$
\{-5,\{-1,0,1\}\} \quad\{-3,\{-3,1,3\}\} \quad\{1,\{-1,1,2\}\}
$$

(b) The eigenvalues are $\{-2,2,2\}$ and the eigenvector(s) are

$$
\{-2,\{1,0,1\}\} \quad\{2,\{0,0,1\}\} \quad\{2,\{1,1,0\}\}
$$

(c) The eigenvalues are $\{3,2,2\}$ and the eigenvector(s) are

$$
\{3,\{1,0,1\}\} \quad\{2,\{1,-1,3\}\}
$$

(d) The eigenvalues are $\{-3,-3,-3\}$ and the eigenvector(s) are

$$
\{-3,\{-1,0,1\}\} \quad\{-3,\{-1,1,0\}\}
$$

(e) The eigenvalues are $\{-2,-2,-2\}$ and the eigenvector(s) are

$$
\{-2,\{2,1,1\}\}
$$

[16] Answers for Set No: XVI

(a) The eigenvalues are $\{-2,-1,0\}$ and the eigenvector(s) are

$$
\{-2,\{-1,1,0\}\} \quad\{-1,\{3,-2,2\}\} \quad\{0,\{3,-2,3\}\}
$$

(b) The eigenvalues are $\{2,2,0\}$ and the eigenvector(s) are

$$
\{2,\{1,0,2\}\} \quad\{2,\{1,2,0\}\} \quad\{0,\{0,-2,1\}\}
$$

(c) The eigenvalues are $\{2,2,-1\}$ and the eigenvector(s) are

$$
\{2,\{1,1,0\}\} \quad\{-1,\{-2,-1,2\}\}
$$

(d) The eigenvalues are $\{-2,-2,-2\}$ and the eigenvector(s) are

$$
\{-2,\{-2,0,1\}\} \quad\{-2,\{1,1,0\}\}
$$

(e) The eigenvalues are $\{-2,-2,-2\}$ and the eigenvector(s) are

$$
\{-2,\{2,1,2\}\}
$$

[17] Answers for Set No: XVII

(a) The eigenvalues are $\{-3,-2,1\}$ and the eigenvector(s) are

$$
\{-3,\{-1,0,1\}\} \quad\{-2,\{-2,1,3\}\} \quad\{1,\{0,1,0\}\}
$$

(b) The eigenvalues are $\{2,2,1\}$ and the eigenvector(s) are

$$
\{2,\{0,0,1\}\} \quad\{2,\{-1,1,0\}\} \quad\{1,\{1,0,1\}\}
$$

(c) The eigenvalues are $\{-2,-2,1\}$ and the eigenvector(s) are

$$
\{-2,\{-3,1,2\}\} \quad\{1,\{-1,1,1\}\}
$$

(d) The eigenvalues are $\{-2,-2,-2\}$ and the eigenvector(s) are

$$
\{-2,\{-1,0,1\}\} \quad\{-2,\{1,1,0\}\}
$$

(e) The eigenvalues are $\{-1,-1,-1\}$ and the eigenvector(s) are

$$
\{-1,\{1,0,1\}\}
$$

Click Here to Go Back To Questions

[18] Answers for Set No: XVIII

(a) The eigenvalues are $\{5,1,0\}$ and the eigenvector(s) are

$$
\{5,\{1,1,1\}\} \quad\{1,\{0,-1,1\}\} \quad\{0,\{1,-1,2\}\}
$$

(b) The eigenvalues are $\{3,3,2\}$ and the eigenvector(s) are

$$
\{3,\{-1,0,3\}\} \quad\{3,\{4,3,0\}\} \quad\{2,\{1,1,0\}\}
$$

(c) The eigenvalues are $\{3,-2,-2\}$ and the eigenvector(s) are

$$
\{3,\{-1,0,1\}\} \quad\{-2,\{-3,-1,2\}\}
$$

(d) The eigenvalues are $\{-2,-2,-2\}$ and the eigenvector(s) are

$$
\{-2,\{0,0,1\}\} \quad\{-2,\{-1,1,0\}\}
$$

(e) The eigenvalues are $\{1,1,1\}$ and the eigenvector(s) are

$$
\{1,\{0,0,1\}\}
$$

[19] Answers for Set No: XIX

(a) The eigenvalues are $\{3,-1,0\}$ and the eigenvector(s) are

$$
\{3,\{-2,-2,1\}\} \quad\{-1,\{-1,0,1\}\} \quad\{0,\{-2,-1,1\}\}
$$

(b) The eigenvalues are $\{3,3,1\}$ and the eigenvector(s) are

$$
\{3,\{0,-1,1\}\} \quad\{3,\{1,0,0\}\} \quad\{1,\{1,0,1\}\}
$$

(c) The eigenvalues are $\{-1,1,1\}$ and the eigenvector(s) are

$$
\{-1,\{2,1,2\}\} \quad\{1,\{1,1,2\}\}
$$

(d) The eigenvalues are $\{-1,-1,-1\}$ and the eigenvector(s) are

$$
\{-1,\{0,1,1\}\} \quad\{-1,\{1,0,0\}\}
$$

(e) The eigenvalues are $\{2,2,2\}$ and the eigenvector(s) are

$$
\{2,\{-1,0,2\}\}
$$

Click Here to Go Back To Questions

[20] Answers for Set No: XX

(a) The eigenvalues are $\{5,2,1\}$ and the eigenvector(s) are

$$
\{5,\{1,-1,1\}\} \quad\{2,\{-1,1,0\}\} \quad\{1,\{3,-2,1\}\}
$$

(b) The eigenvalues are $\{3,3,1\}$ and the eigenvector(s) are

$$
\{3,\{-1,0,1\}\} \quad\{3,\{0,1,0\}\} \quad\{1,\{-1,-1,2\}\}
$$

(c) The eigenvalues are $\{-1,-1,0\}$ and the eigenvector(s) are

$$
\{-1,\{1,0,0\}\} \quad\{0,\{2,2,1\}\}
$$

(d) The eigenvalues are $\{-1,-1,-1\}$ and the eigenvector(s) are

$$
\{-1,\{0,0,1\}\} \quad\{-1,\{2,1,0\}\}
$$

(e) The eigenvalues are $\{2,2,2\}$ and the eigenvector(s) are

$$
\{2,\{-1,0,2\}\}
$$

[21] Answers for Set No: XXI

(a) The eigenvalues are $\{3,-2,1\}$ and the eigenvector(s) are

$$
\{3,\{-1,2,1\}\} \quad\{-2,\{-1,1,1\}\} \quad\{1,\{-1,1,0\}\}
$$

(b) The eigenvalues are $\{3,3,2\}$ and the eigenvector(s) are

$$
\{3,\{0,0,1\}\} \quad\{3,\{-1,2,0\}\} \quad\{2,\{-1,1,2\}\}
$$

(c) The eigenvalues are $\{2,1,1\}$ and the eigenvector(s) are

$$
\{2,\{-1,1,0\}\} \quad\{1,\{1,0,1\}\}
$$

(d) The eigenvalues are $\{-1,-1,-1\}$ and the eigenvector(s) are

$$
\{-1,\{0,0,1\}\} \quad\{-1,\{2,1,0\}\}
$$

(e) The eigenvalues are $\{3,3,3\}$ and the eigenvector(s) are

$$
\{3,\{1,0,1\}\}
$$

[22] Answers for Set No: XXII

(a) The eigenvalues are $\{3,2,0\}$ and the eigenvector(s) are

$$
\{3,\{-2,3,1\}\} \quad\{2,\{-1,1,1\}\} \quad\{0,\{-1,1,0\}\}
$$

(b) The eigenvalues are $\{-3,-3,-1\}$ and the eigenvector(s) are

$$
\{-3,\{0,-1,1\}\} \quad\{-3,\{1,0,0\}\} \quad\{-1,\{2,0,1\}\}
$$

(c) The eigenvalues are $\{3,3,2\}$ and the eigenvector(s) are

$$
\{3,\{-1,-1,1\}\} \quad\{2,\{1,1,0\}\}
$$

(d) The eigenvalues are $\{-1,-1,-1\}$ and the eigenvector(s) are

$$
\{-1,\{0,1,2\}\} \quad\{-1,\{1,0,0\}\}
$$

(e) The eigenvalues are $\{3,3,3\}$ and the eigenvector(s) are

$$
\{3,\{1,0,1\}\}
$$

[23] Answers for Set No: XXIII

(a) The eigenvalues are $\{-3,-1,0\}$ and the eigenvector(s) are

$$
\{-3,\{1,0,1\}\} \quad\{-1,\{5,-3,3\}\} \quad\{0,\{-1,1,0\}\}
$$

(b) The eigenvalues are $\{-3,-2,-2\}$ and the eigenvector(s) are

$$
\{-3,\{-1,1,1\}\} \quad\{-2,\{-3,0,2\}\} \quad\{-2,\{0,1,0\}\}
$$

(c) The eigenvalues are $\{3,2,2\}$ and the eigenvector(s) are

$$
\{3,\{1,0,1\}\} \quad\{2,\{1,-1,3\}\}
$$

(d) The eigenvalues are $\{1,1,1\}$ and the eigenvector(s) are

$$
\{1,\{0,0,1\}\} \quad\{1,\{2,1,0\}\}
$$

(e) The eigenvalues are $\{-3,-3,-3\}$ and the eigenvector(s) are

$$
\{-3,\{-1,2,0\}\}
$$

[24] Answers for Set No: XXIV

(a) The eigenvalues are $\{-5,-1,0\}$ and the eigenvector(s) are

$$
\{-5,\{-1,1,1\}\} \quad\{-1,\{-1,2,1\}\} \quad\{0,\{-1,1,0\}\}
$$

(b) The eigenvalues are $\{3,-2,-2\}$ and the eigenvector(s) are

$$
\{3,\{-1,-1,1\}\} \quad\{-2,\{-1,0,1\}\} \quad\{-2,\{1,1,0\}\}
$$

(c) The eigenvalues are $\{2,2,-1\}$ and the eigenvector(s) are

$$
\{2,\{1,1,0\}\} \quad\{-1,\{-2,-1,2\}\}
$$

(d) The eigenvalues are $\{1,1,1\}$ and the eigenvector(s) are

$$
\{1,\{2,0,1\}\} \quad\{1,\{0,1,0\}\}
$$

(e) The eigenvalues are $\{-2,-2,-2\}$ and the eigenvector(s) are

$$
\{-2,\{-1,-1,1\}\}
$$

[25] Answers for Set No: XXV

(a) The eigenvalues are $\{-3,1,0\}$ and the eigenvector(s) are

$$
\{-3,\{-1,0,1\}\} \quad\{1,\{-1,1,2\}\} \quad\{0,\{-3,2,6\}\}
$$

(b) The eigenvalues are $\{-3,-3,-1\}$ and the eigenvector(s) are

$$
\{-3,\{1,0,1\}\} \quad\{-3,\{0,1,0\}\} \quad\{-1,\{2,1,1\}\}
$$

(c) The eigenvalues are $\{-2,-2,1\}$ and the eigenvector(s) are

$$
\{-2,\{-3,1,2\}\} \quad\{1,\{-1,1,1\}\}
$$

(d) The eigenvalues are $\{1,1,1\}$ and the eigenvector(s) are

$$
\{1,\{0,0,1\}\} \quad\{1,\{2,1,0\}\}
$$

(e) The eigenvalues are $\{-2,-2,-2\}$ and the eigenvector(s) are

$$
\{-2,\{-1,1,0\}\}
$$

Click Here to Go Back To Questions

[26] Answers for Set No: XXVI

(a) The eigenvalues are $\{-2,1,0\}$ and the eigenvector(s) are

$$
\{-2,\{-1,1,0\}\} \quad\{1,\{-1,0,1\}\} \quad\{0,\{-2,-1,2\}\}
$$

(b) The eigenvalues are $\{-3,-1,-1\}$ and the eigenvector(s) are

$$
\{-3,\{2,1,1\}\} \quad\{-1,\{1,0,1\}\} \quad\{-1,\{0,1,0\}\}
$$

(c) The eigenvalues are $\{3,-2,-2\}$ and the eigenvector(s) are

$$
\{3,\{-1,0,1\}\} \quad\{-2,\{-3,-1,2\}\}
$$

(d) The eigenvalues are $\{2,2,2\}$ and the eigenvector(s) are

$$
\{2,\{0,-1,2\}\} \quad\{2,\{1,0,0\}\}
$$

(e) The eigenvalues are $\{-2,-2,-2\}$ and the eigenvector(s) are

$$
\{-2,\{2,1,1\}\}
$$

[27] Answers for Set No: XXVII

(a) The eigenvalues are $\{-3,-1,0\}$ and the eigenvector(s) are

$$
\{-3,\{-1,1,0\}\} \quad\{-1,\{-2,3,1\}\} \quad\{0,\{-1,1,1\}\}
$$

(b) The eigenvalues are $\{-2,-2,-1\}$ and the eigenvector(s) are

$$
\{-2,\{1,0,1\}\} \quad\{-2,\{-1,2,0\}\} \quad\{-1,\{2,-3,1\}\}
$$

(c) The eigenvalues are $\{-1,1,1\}$ and the eigenvector(s) are

$$
\{-1,\{2,1,2\}\} \quad\{1,\{1,1,2\}\}
$$

(d) The eigenvalues are $\{3,3,3\}$ and the eigenvector(s) are

$$
\{3,\{2,0,1\}\} \quad\{3,\{1,1,0\}\}
$$

(e) The eigenvalues are $\{-2,-2,-2\}$ and the eigenvector(s) are

$$
\{-2,\{2,1,2\}\}
$$

[28] Answers for Set No: XXVIII

(a) The eigenvalues are $\{-3,-1,0\}$ and the eigenvector(s) are

$$
\{-3,\{1,1,1\}\} \quad\{-1,\{1,1,2\}\} \quad\{0,\{1,2,3\}\}
$$

(b) The eigenvalues are $\{-2,-1,-1\}$ and the eigenvector(s) are

$$
\{-2,\{3,1,0\}\} \quad\{-1,\{0,0,1\}\} \quad\{-1,\{2,1,0\}\}
$$

(c) The eigenvalues are $\{-1,-1,0\}$ and the eigenvector(s) are

$$
\{-1,\{1,0,0\}\} \quad\{0,\{2,2,1\}\}
$$

(d) The eigenvalues are $\{3,3,3\}$ and the eigenvector(s) are

$$
\{3,\{1,0,2\}\} \quad\{3,\{1,1,0\}\}
$$

(e) The eigenvalues are $\{-1,-1,-1\}$ and the eigenvector(s) are

$$
\{-1,\{1,0,1\}\}
$$

[29] Answers for Set No: XXIX

(a) The eigenvalues are $\{-2,-1,0\}$ and the eigenvector(s) are

$$
\{-2,\{-3,3,1\}\} \quad\{-1,\{-2,2,1\}\} \quad\{0,\{0,1,0\}\}
$$

(b) The eigenvalues are $\{3,-1,-1\}$ and the eigenvector(s) are

$$
\{3,\{1,0,1\}\} \quad\{-1,\{1,0,2\}\} \quad\{-1,\{1,1,0\}\}
$$

(c) The eigenvalues are $\{2,1,1\}$ and the eigenvector(s) are

$$
\{2,\{-1,1,0\}\} \quad\{1,\{1,0,1\}\}
$$

(d) The eigenvalues are $\{-3,-3,-3\}$ and the eigenvector(s) are

$$
\{-3,\{-1,0,1\}\} \quad\{-3,\{-1,1,0\}\}
$$

(e) The eigenvalues are $\{1,1,1\}$ and the eigenvector(s) are

$$
\{1,\{0,0,1\}\}
$$

[30] Answers for Set No: XXX

(a) The eigenvalues are $\{-4,-2,0\}$ and the eigenvector(s) are

$$
\{-4,\{-1,-1,1\}\} \quad\{-2,\{1,1,0\}\} \quad\{0,\{0,-1,1\}\}
$$

(b) The eigenvalues are $\{-1,-1,0\}$ and the eigenvector(s) are

$$
\{-1,\{-3,0,1\}\} \quad\{-1,\{1,1,0\}\} \quad\{0,\{-1,1,1\}\}
$$

(c) The eigenvalues are $\{3,3,2\}$ and the eigenvector(s) are

$$
\{3,\{-1,-1,1\}\} \quad\{2,\{1,1,0\}\}
$$

(d) The eigenvalues are $\{-2,-2,-2\}$ and the eigenvector(s) are

$$
\{-2,\{-2,0,1\}\} \quad\{-2,\{1,1,0\}\}
$$

(e) The eigenvalues are $\{2,2,2\}$ and the eigenvector(s) are

$$
\{2,\{-1,0,2\}\}
$$

[31] Answers for Set No: XXXI

(a) The eigenvalues are $\{-4,3,0\}$ and the eigenvector(s) are

$$
\{-4,\{-1,-1,1\}\} \quad\{3,\{0,-1,1\}\} \quad\{0,\{1,1,0\}\}
$$

(b) The eigenvalues are $\{-1,-1,0\}$ and the eigenvector(s) are

$$
\{-1,\{0,3,1\}\} \quad\{-1,\{1,0,0\}\} \quad\{0,\{2,2,1\}\}
$$

(c) The eigenvalues are $\{3,2,2\}$ and the eigenvector(s) are

$$
\{3,\{1,0,1\}\} \quad\{2,\{1,-1,3\}\}
$$

(d) The eigenvalues are $\{-2,-2,-2\}$ and the eigenvector(s) are

$$
\{-2,\{-1,0,1\}\} \quad\{-2,\{1,1,0\}\}
$$

(e) The eigenvalues are $\{2,2,2\}$ and the eigenvector(s) are

$$
\{2,\{-1,0,2\}\}
$$

[32] Answers for Set No: XXXII

(a) The eigenvalues are $\{-4,1,0\}$ and the eigenvector(s) are

$$
\{-4,\{-1,-1,1\}\} \quad\{1,\{0,-1,1\}\} \quad\{0,\{1,1,0\}\}
$$

(b) The eigenvalues are $\{1,1,0\}$ and the eigenvector(s) are

$$
\{1,\{0,0,1\}\} \quad\{1,\{1,1,0\}\} \quad\{0,\{2,1,0\}\}
$$

(c) The eigenvalues are $\{2,2,-1\}$ and the eigenvector(s) are

$$
\{2,\{1,1,0\}\} \quad\{-1,\{-2,-1,2\}\}
$$

(d) The eigenvalues are $\{-2,-2,-2\}$ and the eigenvector(s) are

$$
\{-2,\{0,0,1\}\} \quad\{-2,\{-1,1,0\}\}
$$

(e) The eigenvalues are $\{3,3,3\}$ and the eigenvector(s) are

$$
\{3,\{1,0,1\}\}
$$

[33] Answers for Set No: XXXIII

(a) The eigenvalues are $\{2,-1,0\}$ and the eigenvector(s) are

$$
\{2,\{1,1,0\}\} \quad\{-1,\{0,-1,1\}\} \quad\{0,\{-3,-4,2\}\}
$$

(b) The eigenvalues are $\{-3,-3,1\}$ and the eigenvector(s) are

$$
\{-3,\{0,1,1\}\} \quad\{-3,\{1,0,0\}\} \quad\{1,\{-2,1,0\}\}
$$

(c) The eigenvalues are $\{-2,-2,1\}$ and the eigenvector(s) are

$$
\{-2,\{-3,1,2\}\} \quad\{1,\{-1,1,1\}\}
$$

(d) The eigenvalues are $\{-1,-1,-1\}$ and the eigenvector(s) are

$$
\{-1,\{0,1,1\}\} \quad\{-1,\{1,0,0\}\}
$$

(e) The eigenvalues are $\{3,3,3\}$ and the eigenvector(s) are

$$
\{3,\{1,0,1\}\}
$$

[34] Answers for Set No: XXXIV

(a) The eigenvalues are $\{-3,2,0\}$ and the eigenvector(s) are

$$
\{-3,\{0,-1,1\}\} \quad\{2,\{1,1,0\}\} \quad\{0,\{-3,-4,2\}\}
$$

(b) The eigenvalues are $\{1,1,0\}$ and the eigenvector(s) are

$$
\{1,\{0,-1,2\}\} \quad\{1,\{1,0,0\}\} \quad\{0,\{-3,-1,1\}\}
$$

(c) The eigenvalues are $\{3,-2,-2\}$ and the eigenvector(s) are

$$
\{3,\{-1,0,1\}\} \quad\{-2,\{-3,-1,2\}\}
$$

(d) The eigenvalues are $\{-1,-1,-1\}$ and the eigenvector(s) are

$$
\{-1,\{0,0,1\}\} \quad\{-1,\{2,1,0\}\}
$$

(e) The eigenvalues are $\{-3,-3,-3\}$ and the eigenvector(s) are

$$
\{-3,\{-1,2,0\}\}
$$

[35] Answers for Set No: XXXV

(a) The eigenvalues are $\{4,3,-2\}$ and the eigenvector(s) are

$$
\{4,\{-1,1,0\}\} \quad\{3,\{-1,1,1\}\} \quad\{-2,\{1,0,1\}\}
$$

(b) The eigenvalues are $\{2,1,1\}$ and the eigenvector(s) are

$$
\{2,\{-1,0,2\}\} \quad\{1,\{0,0,1\}\} \quad\{1,\{-2,1,0\}\}
$$

(c) The eigenvalues are $\{-1,1,1\}$ and the eigenvector(s) are

$$
\{-1,\{2,1,2\}\} \quad\{1,\{1,1,2\}\}
$$

(d) The eigenvalues are $\{-1,-1,-1\}$ and the eigenvector(s) are

$$
\{-1,\{0,0,1\}\} \quad\{-1,\{2,1,0\}\}
$$

(e) The eigenvalues are $\{-2,-2,-2\}$ and the eigenvector(s) are

$$
\{-2,\{-1,-1,1\}\}
$$

[36] Answers for Set No: XXXVI

(a) The eigenvalues are $\{3,-2,1\}$ and the eigenvector(s) are

$$
\{3,\{-1,1,0\}\} \quad\{-2,\{-2,-1,2\}\} \quad\{1,\{-1,0,1\}\}
$$

(b) The eigenvalues are $\{-2,2,2\}$ and the eigenvector(s) are

$$
\{-2,\{1,0,1\}\} \quad\{2,\{0,0,1\}\} \quad\{2,\{1,1,0\}\}
$$

(c) The eigenvalues are $\{-1,-1,0\}$ and the eigenvector(s) are

$$
\{-1,\{1,0,0\}\} \quad\{0,\{2,2,1\}\}
$$

(d) The eigenvalues are $\{-1,-1,-1\}$ and the eigenvector(s) are

$$
\{-1,\{0,1,2\}\} \quad\{-1,\{1,0,0\}\}
$$

(e) The eigenvalues are $\{-2,-2,-2\}$ and the eigenvector(s) are

$$
\{-2,\{-1,1,0\}\}
$$

[37] Answers for Set No: XXXVII

(a) The eigenvalues are $\{7,2,1\}$ and the eigenvector(s) are

$$
\{7,\{-1,1,1\}\} \quad\{2,\{-2,1,1\}\} \quad\{1,\{-1,1,0\}\}
$$

(b) The eigenvalues are $\{2,2,0\}$ and the eigenvector(s) are

$$
\{2,\{1,0,2\}\} \quad\{2,\{1,2,0\}\} \quad\{0,\{0,-2,1\}\}
$$

(c) The eigenvalues are $\{2,1,1\}$ and the eigenvector(s) are

$$
\{2,\{-1,1,0\}\} \quad\{1,\{1,0,1\}\}
$$

(d) The eigenvalues are $\{1,1,1\}$ and the eigenvector(s) are

$$
\{1,\{0,0,1\}\} \quad\{1,\{2,1,0\}\}
$$

(e) The eigenvalues are $\{-2,-2,-2\}$ and the eigenvector(s) are

$$
\{-2,\{2,1,1\}\}
$$

Click Here to Go Back To Questions
[38] Answers for Set No: XXXVIII
(a) The eigenvalues are $\{2,1,0\}$ and the eigenvector(s) are

$$
\{2,\{-1,0,1\}\} \quad\{1,\{-1,1,0\}\} \quad\{0,\{-2,-1,2\}\}
$$

(b) The eigenvalues are $\{2,2,1\}$ and the eigenvector(s) are

$$
\{2,\{0,0,1\}\} \quad\{2,\{-1,1,0\}\} \quad\{1,\{1,0,1\}\}
$$

(c) The eigenvalues are $\{3,3,2\}$ and the eigenvector(s) are

$$
\{3,\{-1,-1,1\}\} \quad\{2,\{1,1,0\}\}
$$

(d) The eigenvalues are $\{1,1,1\}$ and the eigenvector(s) are

$$
\{1,\{2,0,1\}\} \quad\{1,\{0,1,0\}\}
$$

(e) The eigenvalues are $\{-2,-2,-2\}$ and the eigenvector(s) are

$$
\{-2,\{2,1,2\}\}
$$

[39] Answers for Set No: XXXIX

(a) The eigenvalues are $\{5,1,0\}$ and the eigenvector(s) are

$$
\{5,\{-1,1,1\}\} \quad\{1,\{-2,1,1\}\} \quad\{0,\{-1,1,0\}\}
$$

(b) The eigenvalues are $\{3,3,2\}$ and the eigenvector(s) are

$$
\{3,\{-1,0,3\}\} \quad\{3,\{4,3,0\}\} \quad\{2,\{1,1,0\}\}
$$

(c) The eigenvalues are $\{3,2,2\}$ and the eigenvector(s) are

$$
\{3,\{1,0,1\}\} \quad\{2,\{1,-1,3\}\}
$$

(d) The eigenvalues are $\{1,1,1\}$ and the eigenvector(s) are

$$
\{1,\{0,0,1\}\} \quad\{1,\{2,1,0\}\}
$$

(e) The eigenvalues are $\{-1,-1,-1\}$ and the eigenvector(s) are

$$
\{-1,\{1,0,1\}\}
$$

Click Here to Go Back To Questions
[40] Answers for Set No: XL
(a) The eigenvalues are $\{3,2,0\}$ and the eigenvector(s) are

$$
\{3,\{-1,2,3\}\} \quad\{2,\{-3,5,6\}\} \quad\{0,\{-1,1,1\}\}
$$

(b) The eigenvalues are $\{3,3,1\}$ and the eigenvector(s) are

$$
\{3,\{0,-1,1\}\} \quad\{3,\{1,0,0\}\} \quad\{1,\{1,0,1\}\}
$$

(c) The eigenvalues are $\{2,2,-1\}$ and the eigenvector(s) are

$$
\{2,\{1,1,0\}\} \quad\{-1,\{-2,-1,2\}\}
$$

(d) The eigenvalues are $\{2,2,2\}$ and the eigenvector(s) are

$$
\{2,\{0,-1,2\}\} \quad\{2,\{1,0,0\}\}
$$

(e) The eigenvalues are $\{1,1,1\}$ and the eigenvector(s) are

$$
\{1,\{0,0,1\}\}
$$

[41] Answers for Set No: XLI

(a) The eigenvalues are $\{5,-2,1\}$ and the eigenvector(s) are

$$
\{5,\{-1,1,1\}\} \quad\{-2,\{0,1,0\}\} \quad\{1,\{-2,2,1\}\}
$$

(b) The eigenvalues are $\{3,3,1\}$ and the eigenvector(s) are

$$
\{3,\{-1,0,1\}\} \quad\{3,\{0,1,0\}\} \quad\{1,\{-1,-1,2\}\}
$$

(c) The eigenvalues are $\{-2,-2,1\}$ and the eigenvector(s) are

$$
\{-2,\{-3,1,2\}\} \quad\{1,\{-1,1,1\}\}
$$

(d) The eigenvalues are $\{3,3,3\}$ and the eigenvector(s) are

$$
\{3,\{2,0,1\}\} \quad\{3,\{1,1,0\}\}
$$

(e) The eigenvalues are $\{2,2,2\}$ and the eigenvector(s) are

$$
\{2,\{-1,0,2\}\}
$$

[42] Answers for Set No: XLII

(a) The eigenvalues are $\{-2,-1,0\}$ and the eigenvector(s) are

$$
\{-2,\{1,-1,2\}\} \quad\{-1,\{1,1,1\}\} \quad\{0,\{0,-1,1\}\}
$$

(b) The eigenvalues are $\{3,3,2\}$ and the eigenvector(s) are

$$
\{3,\{0,0,1\}\} \quad\{3,\{-1,2,0\}\} \quad\{2,\{-1,1,2\}\}
$$

(c) The eigenvalues are $\{3,-2,-2\}$ and the eigenvector(s) are

$$
\{3,\{-1,0,1\}\} \quad\{-2,\{-3,-1,2\}\}
$$

(d) The eigenvalues are $\{3,3,3\}$ and the eigenvector(s) are

$$
\{3,\{1,0,2\}\} \quad\{3,\{1,1,0\}\}
$$

(e) The eigenvalues are $\{2,2,2\}$ and the eigenvector(s) are

$$
\{2,\{-1,0,2\}\}
$$

[43] Answers for Set No: XLIII

(a) The eigenvalues are $\{-5,-3,2\}$ and the eigenvector(s) are

$$
\{-5,\{0,-1,1\}\} \quad\{-3,\{-1,-3,3\}\} \quad\{2,\{1,1,0\}\}
$$

(b) The eigenvalues are $\{-3,-3,-1\}$ and the eigenvector(s) are

$$
\{-3,\{0,-1,1\}\} \quad\{-3,\{1,0,0\}\} \quad\{-1,\{2,0,1\}\}
$$

(c) The eigenvalues are $\{-1,1,1\}$ and the eigenvector(s) are

$$
\{-1,\{2,1,2\}\} \quad\{1,\{1,1,2\}\}
$$

(d) The eigenvalues are $\{-3,-3,-3\}$ and the eigenvector(s) are

$$
\{-3,\{-1,0,1\}\} \quad\{-3,\{-1,1,0\}\}
$$

(e) The eigenvalues are $\{3,3,3\}$ and the eigenvector(s) are

$$
\{3,\{1,0,1\}\}
$$

[44] Answers for Set No: XLIV

(a) The eigenvalues are $\{4,2,-1\}$ and the eigenvector(s) are

$$
\{4,\{-2,-2,1\}\} \quad\{2,\{-2,-1,2\}\} \quad\{-1,\{-1,0,1\}\}
$$

(b) The eigenvalues are $\{-3,-2,-2\}$ and the eigenvector(s) are

$$
\{-3,\{-1,1,1\}\} \quad\{-2,\{-3,0,2\}\} \quad\{-2,\{0,1,0\}\}
$$

(c) The eigenvalues are $\{-1,-1,0\}$ and the eigenvector(s) are

$$
\{-1,\{1,0,0\}\} \quad\{0,\{2,2,1\}\}
$$

(d) The eigenvalues are $\{-2,-2,-2\}$ and the eigenvector(s) are

$$
\{-2,\{-2,0,1\}\} \quad\{-2,\{1,1,0\}\}
$$

(e) The eigenvalues are $\{3,3,3\}$ and the eigenvector(s) are

$$
\{3,\{1,0,1\}\}
$$

[45] Answers for Set No: XLV

(a) The eigenvalues are $\{3,2,-1\}$ and the eigenvector(s) are

$$
\{3,\{-1,1,0\}\} \quad\{2,\{-1,1,1\}\} \quad\{-1,\{1,0,1\}\}
$$

(b) The eigenvalues are $\{3,-2,-2\}$ and the eigenvector(s) are

$$
\{3,\{-1,-1,1\}\} \quad\{-2,\{-1,0,1\}\} \quad\{-2,\{1,1,0\}\}
$$

(c) The eigenvalues are $\{2,1,1\}$ and the eigenvector(s) are

$$
\{2,\{-1,1,0\}\} \quad\{1,\{1,0,1\}\}
$$

(d) The eigenvalues are $\{-2,-2,-2\}$ and the eigenvector(s) are

$$
\{-2,\{-1,0,1\}\} \quad\{-2,\{1,1,0\}\}
$$

(e) The eigenvalues are $\{-3,-3,-3\}$ and the eigenvector(s) are

$$
\{-3,\{-1,2,0\}\}
$$

Click Here to Go Back To Questions

[46] Answers for Set No: XLVI

(a) The eigenvalues are $\{3,1,0\}$ and the eigenvector(s) are

$$
\{3,\{-1,2,1\}\} \quad\{1,\{-1,1,0\}\} \quad\{0,\{-1,1,1\}\}
$$

(b) The eigenvalues are $\{-3,-3,-1\}$ and the eigenvector(s) are

$$
\{-3,\{1,0,1\}\} \quad\{-3,\{0,1,0\}\} \quad\{-1,\{2,1,1\}\}
$$

(c) The eigenvalues are $\{3,3,2\}$ and the eigenvector(s) are

$$
\{3,\{-1,-1,1\}\} \quad\{2,\{1,1,0\}\}
$$

(d) The eigenvalues are $\{-2,-2,-2\}$ and the eigenvector(s) are

$$
\{-2,\{0,0,1\}\} \quad\{-2,\{-1,1,0\}\}
$$

(e) The eigenvalues are $\{-2,-2,-2\}$ and the eigenvector(s) are

$$
\{-2,\{-1,-1,1\}\}
$$

[47] Answers for Set No: XLVII

(a) The eigenvalues are $\{4,2,-1\}$ and the eigenvector(s) are

$$
\{4,\{-1,1,1\}\} \quad\{2,\{-2,3,1\}\} \quad\{-1,\{-1,1,0\}\}
$$

(b) The eigenvalues are $\{-3,-1,-1\}$ and the eigenvector(s) are

$$
\{-3,\{2,1,1\}\} \quad\{-1,\{1,0,1\}\} \quad\{-1,\{0,1,0\}\}
$$

(c) The eigenvalues are $\{3,2,2\}$ and the eigenvector(s) are

$$
\{3,\{1,0,1\}\} \quad\{2,\{1,-1,3\}\}
$$

(d) The eigenvalues are $\{-1,-1,-1\}$ and the eigenvector(s) are

$$
\{-1,\{0,1,1\}\} \quad\{-1,\{1,0,0\}\}
$$

(e) The eigenvalues are $\{-2,-2,-2\}$ and the eigenvector(s) are

$$
\{-2,\{-1,1,0\}\}
$$

[48] Answers for Set No: XLVIII

(a) The eigenvalues are $\{4,-2,1\}$ and the eigenvector(s) are

$$
\{4,\{-1,1,1\}\} \quad\{-2,\{0,1,0\}\} \quad\{1,\{-2,2,1\}\}
$$

(b) The eigenvalues are $\{-2,-2,-1\}$ and the eigenvector(s) are

$$
\{-2,\{1,0,1\}\} \quad\{-2,\{-1,2,0\}\} \quad\{-1,\{2,-3,1\}\}
$$

(c) The eigenvalues are $\{2,2,-1\}$ and the eigenvector(s) are

$$
\{2,\{1,1,0\}\} \quad\{-1,\{-2,-1,2\}\}
$$

(d) The eigenvalues are $\{-1,-1,-1\}$ and the eigenvector(s) are

$$
\{-1,\{0,0,1\}\} \quad\{-1,\{2,1,0\}\}
$$

(e) The eigenvalues are $\{-2,-2,-2\}$ and the eigenvector(s) are

$$
\{-2,\{2,1,1\}\}
$$

[49] Answers for Set No: XLIX

(a) The eigenvalues are $\{4,-2,1\}$ and the eigenvector(s) are

$$
\{4,\{-1,1,1\}\} \quad\{-2,\{-1,1,0\}\} \quad\{1,\{-2,1,1\}\}
$$

(b) The eigenvalues are $\{-2,-1,-1\}$ and the eigenvector(s) are

$$
\{-2,\{3,1,0\}\} \quad\{-1,\{0,0,1\}\} \quad\{-1,\{2,1,0\}\}
$$

(c) The eigenvalues are $\{-2,-2,1\}$ and the eigenvector(s) are

$$
\{-2,\{-3,1,2\}\} \quad\{1,\{-1,1,1\}\}
$$

(d) The eigenvalues are $\{-1,-1,-1\}$ and the eigenvector(s) are

$$
\{-1,\{0,0,1\}\} \quad\{-1,\{2,1,0\}\}
$$

(e) The eigenvalues are $\{-2,-2,-2\}$ and the eigenvector(s) are

$$
\{-2,\{2,1,2\}\}
$$

Click Here to Go Back To Questions

[50] Answers for Set No: L

(a) The eigenvalues are $\{-3,2,0\}$ and the eigenvector(s) are

$$
\{-3,\{0,1,0\}\} \quad\{2,\{-1,1,1\}\} \quad\{0,\{-2,2,1\}\}
$$

(b) The eigenvalues are $\{3,-1,-1\}$ and the eigenvector(s) are

$$
\{3,\{1,0,1\}\} \quad\{-1,\{1,0,2\}\} \quad\{-1,\{1,1,0\}\}
$$

(c) The eigenvalues are $\{3,-2,-2\}$ and the eigenvector(s) are

$$
\{3,\{-1,0,1\}\} \quad\{-2,\{-3,-1,2\}\}
$$

(d) The eigenvalues are $\{-1,-1,-1\}$ and the eigenvector(s) are

$$
\{-1,\{0,1,2\}\} \quad\{-1,\{1,0,0\}\}
$$

(e) The eigenvalues are $\{-1,-1,-1\}$ and the eigenvector(s) are

$$
\{-1,\{1,0,1\}\}
$$

[51] Answers for Set No: LI

(a) The eigenvalues are $\{4,1,0\}$ and the eigenvector(s) are

$$
\{4,\{0,1,0\}\} \quad\{1,\{1,1,1\}\} \quad\{0,\{3,3,2\}\}
$$

(b) The eigenvalues are $\{-1,-1,0\}$ and the eigenvector(s) are

$$
\{-1,\{-3,0,1\}\} \quad\{-1,\{1,1,0\}\} \quad\{0,\{-1,1,1\}\}
$$

(c) The eigenvalues are $\{-1,1,1\}$ and the eigenvector(s) are

$$
\{-1,\{2,1,2\}\} \quad\{1,\{1,1,2\}\}
$$

(d) The eigenvalues are $\{1,1,1\}$ and the eigenvector(s) are

$$
\{1,\{0,0,1\}\} \quad\{1,\{2,1,0\}\}
$$

(e) The eigenvalues are $\{1,1,1\}$ and the eigenvector(s) are

$$
\{1,\{0,0,1\}\}
$$

[52] Answers for Set No: LII

(a) The eigenvalues are $\{-2,1,0\}$ and the eigenvector(s) are

$$
\{-2,\{0,1,0\}\} \quad\{1,\{1,2,1\}\} \quad\{0,\{3,6,2\}\}
$$

(b) The eigenvalues are $\{-1,-1,0\}$ and the eigenvector(s) are

$$
\{-1,\{0,3,1\}\} \quad\{-1,\{1,0,0\}\} \quad\{0,\{2,2,1\}\}
$$

(c) The eigenvalues are $\{-1,-1,0\}$ and the eigenvector(s) are

$$
\{-1,\{1,0,0\}\} \quad\{0,\{2,2,1\}\}
$$

(d) The eigenvalues are $\{1,1,1\}$ and the eigenvector(s) are

$$
\{1,\{2,0,1\}\} \quad\{1,\{0,1,0\}\}
$$

(e) The eigenvalues are $\{2,2,2\}$ and the eigenvector(s) are

$$
\{2,\{-1,0,2\}\}
$$

[53] Answers for Set No: LIII

(a) The eigenvalues are $\{-2,-1,0\}$ and the eigenvector(s) are

$$
\{-2,\{-1,-1,1\}\} \quad\{-1,\{1,1,0\}\} \quad\{0,\{0,-1,1\}\}
$$

(b) The eigenvalues are $\{1,1,0\}$ and the eigenvector(s) are

$$
\{1,\{0,0,1\}\} \quad\{1,\{1,1,0\}\} \quad\{0,\{2,1,0\}\}
$$

(c) The eigenvalues are $\{2,1,1\}$ and the eigenvector(s) are

$$
\{2,\{-1,1,0\}\} \quad\{1,\{1,0,1\}\}
$$

(d) The eigenvalues are $\{1,1,1\}$ and the eigenvector(s) are

$$
\{1,\{0,0,1\}\} \quad\{1,\{2,1,0\}\}
$$

(e) The eigenvalues are $\{2,2,2\}$ and the eigenvector(s) are

$$
\{2,\{-1,0,2\}\}
$$

[54] Answers for Set No: LIV

(a) The eigenvalues are $\{-4,2,0\}$ and the eigenvector(s) are

$$
\{-4,\{-1,1,0\}\} \quad\{2,\{-1,1,1\}\} \quad\{0,\{-2,1,1\}\}
$$

(b) The eigenvalues are $\{-3,-3,1\}$ and the eigenvector(s) are

$$
\{-3,\{0,1,1\}\} \quad\{-3,\{1,0,0\}\} \quad\{1,\{-2,1,0\}\}
$$

(c) The eigenvalues are $\{3,3,2\}$ and the eigenvector(s) are

$$
\{3,\{-1,-1,1\}\} \quad\{2,\{1,1,0\}\}
$$

(d) The eigenvalues are $\{2,2,2\}$ and the eigenvector(s) are

$$
\{2,\{0,-1,2\}\} \quad\{2,\{1,0,0\}\}
$$

(e) The eigenvalues are $\{3,3,3\}$ and the eigenvector(s) are

$$
\{3,\{1,0,1\}\}
$$

[55] Answers for Set No: LV

(a) The eigenvalues are $\{2,-1,0\}$ and the eigenvector(s) are

$$
\{2,\{1,3,1\}\} \quad\{-1,\{0,1,1\}\} \quad\{0,\{1,2,1\}\}
$$

(b) The eigenvalues are $\{1,1,0\}$ and the eigenvector(s) are

$$
\{1,\{0,-1,2\}\} \quad\{1,\{1,0,0\}\} \quad\{0,\{-3,-1,1\}\}
$$

(c) The eigenvalues are $\{3,2,2\}$ and the eigenvector(s) are

$$
\{3,\{1,0,1\}\} \quad\{2,\{1,-1,3\}\}
$$

(d) The eigenvalues are $\{3,3,3\}$ and the eigenvector(s) are

$$
\{3,\{2,0,1\}\} \quad\{3,\{1,1,0\}\}
$$

(e) The eigenvalues are $\{3,3,3\}$ and the eigenvector(s) are

$$
\{3,\{1,0,1\}\}
$$

[56] Answers for Set No: LVI

(a) The eigenvalues are $\{-2,1,0\}$ and the eigenvector(s) are

$$
\{-2,\{0,-1,1\}\} \quad\{1,\{1,1,0\}\} \quad\{0,\{-3,-4,2\}\}
$$

(b) The eigenvalues are $\{2,1,1\}$ and the eigenvector(s) are

$$
\{2,\{-1,0,2\}\} \quad\{1,\{0,0,1\}\} \quad\{1,\{-2,1,0\}\}
$$

(c) The eigenvalues are $\{2,2,-1\}$ and the eigenvector(s) are

$$
\{2,\{1,1,0\}\} \quad\{-1,\{-2,-1,2\}\}
$$

(d) The eigenvalues are $\{3,3,3\}$ and the eigenvector(s) are

$$
\{3,\{1,0,2\}\} \quad\{3,\{1,1,0\}\}
$$

(e) The eigenvalues are $\{-3,-3,-3\}$ and the eigenvector(s) are

$$
\{-3,\{-1,2,0\}\}
$$

[57] Answers for Set No: LVII

(a) The eigenvalues are $\{-3,1,0\}$ and the eigenvector(s) are

$$
\{-3,\{0,-1,1\}\} \quad\{1,\{1,1,0\}\} \quad\{0,\{-3,-4,2\}\}
$$

(b) The eigenvalues are $\{-2,2,2\}$ and the eigenvector(s) are

$$
\{-2,\{1,0,1\}\} \quad\{2,\{0,0,1\}\} \quad\{2,\{1,1,0\}\}
$$

(c) The eigenvalues are $\{-2,-2,1\}$ and the eigenvector(s) are

$$
\{-2,\{-3,1,2\}\} \quad\{1,\{-1,1,1\}\}
$$

(d) The eigenvalues are $\{-3,-3,-3\}$ and the eigenvector(s) are

$$
\{-3,\{-1,0,1\}\} \quad\{-3,\{-1,1,0\}\}
$$

(e) The eigenvalues are $\{-2,-2,-2\}$ and the eigenvector(s) are

$$
\{-2,\{-1,-1,1\}\}
$$

[58] Answers for Set No: LVIII

(a) The eigenvalues are $\{2,-1,0\}$ and the eigenvector(s) are

$$
\{2,\{-1,1,0\}\} \quad\{-1,\{1,-1,1\}\} \quad\{0,\{3,-2,1\}\}
$$

(b) The eigenvalues are $\{2,2,0\}$ and the eigenvector(s) are

$$
\{2,\{1,0,2\}\} \quad\{2,\{1,2,0\}\} \quad\{0,\{0,-2,1\}\}
$$

(c) The eigenvalues are $\{3,-2,-2\}$ and the eigenvector(s) are

$$
\{3,\{-1,0,1\}\} \quad\{-2,\{-3,-1,2\}\}
$$

(d) The eigenvalues are $\{-2,-2,-2\}$ and the eigenvector(s) are

$$
\{-2,\{-2,0,1\}\} \quad\{-2,\{1,1,0\}\}
$$

(e) The eigenvalues are $\{-2,-2,-2\}$ and the eigenvector(s) are

$$
\{-2,\{-1,1,0\}\}
$$

[59] Answers for Set No: LIX

(a) The eigenvalues are $\{-2,-1,0\}$ and the eigenvector(s) are

$$
\{-2,\{-1,0,1\}\} \quad\{-1,\{-3,1,3\}\} \quad\{0,\{-1,1,2\}\}
$$

(b) The eigenvalues are $\{2,2,1\}$ and the eigenvector(s) are

$$
\{2,\{0,0,1\}\} \quad\{2,\{-1,1,0\}\} \quad\{1,\{1,0,1\}\}
$$

(c) The eigenvalues are $\{-1,1,1\}$ and the eigenvector(s) are

$$
\{-1,\{2,1,2\}\} \quad\{1,\{1,1,2\}\}
$$

(d) The eigenvalues are $\{-2,-2,-2\}$ and the eigenvector(s) are

$$
\{-2,\{-1,0,1\}\} \quad\{-2,\{1,1,0\}\}
$$

(e) The eigenvalues are $\{-2,-2,-2\}$ and the eigenvector(s) are

$$
\{-2,\{2,1,1\}\}
$$

Click Here to Go Back To Questions

[60] Answers for Set No: LX

(a) The eigenvalues are $\{5,2,1\}$ and the eigenvector(s) are

$$
\{5,\{-1,1,1\}\} \quad\{2,\{-2,1,1\}\} \quad\{1,\{-1,1,0\}\}
$$

(b) The eigenvalues are $\{3,3,2\}$ and the eigenvector(s) are

$$
\{3,\{-1,0,3\}\} \quad\{3,\{4,3,0\}\} \quad\{2,\{1,1,0\}\}
$$

(c) The eigenvalues are $\{-1,-1,0\}$ and the eigenvector(s) are

$$
\{-1,\{1,0,0\}\} \quad\{0,\{2,2,1\}\}
$$

(d) The eigenvalues are $\{-2,-2,-2\}$ and the eigenvector(s) are

$$
\{-2,\{0,0,1\}\} \quad\{-2,\{-1,1,0\}\}
$$

(e) The eigenvalues are $\{-2,-2,-2\}$ and the eigenvector(s) are

$$
\{-2,\{2,1,2\}\}
$$

[61] Answers for Set No: LXI

(a) The eigenvalues are $\{-3,-1,0\}$ and the eigenvector(s) are

$$
\{-3,\{1,1,0\}\} \quad\{-1,\{-1,-1,1\}\} \quad\{0,\{0,-1,1\}\}
$$

(b) The eigenvalues are $\{3,3,1\}$ and the eigenvector(s) are

$$
\{3,\{0,-1,1\}\} \quad\{3,\{1,0,0\}\} \quad\{1,\{1,0,1\}\}
$$

(c) The eigenvalues are $\{2,1,1\}$ and the eigenvector(s) are

$$
\{2,\{-1,1,0\}\} \quad\{1,\{1,0,1\}\}
$$

(d) The eigenvalues are $\{-1,-1,-1\}$ and the eigenvector(s) are

$$
\{-1,\{0,1,1\}\} \quad\{-1,\{1,0,0\}\}
$$

(e) The eigenvalues are $\{-1,-1,-1\}$ and the eigenvector(s) are

$$
\{-1,\{1,0,1\}\}
$$

[62] Answers for Set No: LXII

(a) The eigenvalues are $\{-4,3,0\}$ and the eigenvector(s) are

$$
\{-4,\{1,0,1\}\} \quad\{3,\{-1,1,1\}\} \quad\{0,\{-1,1,0\}\}
$$

(b) The eigenvalues are $\{3,3,1\}$ and the eigenvector(s) are

$$
\{3,\{-1,0,1\}\} \quad\{3,\{0,1,0\}\} \quad\{1,\{-1,-1,2\}\}
$$

(c) The eigenvalues are $\{3,3,2\}$ and the eigenvector(s) are

$$
\{3,\{-1,-1,1\}\} \quad\{2,\{1,1,0\}\}
$$

(d) The eigenvalues are $\{-1,-1,-1\}$ and the eigenvector(s) are

$$
\{-1,\{0,0,1\}\} \quad\{-1,\{2,1,0\}\}
$$

(e) The eigenvalues are $\{1,1,1\}$ and the eigenvector(s) are

$$
\{1,\{0,0,1\}\}
$$

[63] Answers for Set No: LXIII

(a) The eigenvalues are $\{3,1,0\}$ and the eigenvector(s) are

$$
\{3,\{-1,1,1\}\} \quad\{1,\{-2,1,1\}\} \quad\{0,\{-1,1,0\}\}
$$

(b) The eigenvalues are $\{3,3,2\}$ and the eigenvector(s) are

$$
\{3,\{0,0,1\}\} \quad\{3,\{-1,2,0\}\} \quad\{2,\{-1,1,2\}\}
$$

(c) The eigenvalues are $\{3,2,2\}$ and the eigenvector(s) are

$$
\{3,\{1,0,1\}\} \quad\{2,\{1,-1,3\}\}
$$

(d) The eigenvalues are $\{-1,-1,-1\}$ and the eigenvector(s) are

$$
\{-1,\{0,0,1\}\} \quad\{-1,\{2,1,0\}\}
$$

(e) The eigenvalues are $\{2,2,2\}$ and the eigenvector(s) are

$$
\{2,\{-1,0,2\}\}
$$

[64] Answers for Set No: LXIV

(a) The eigenvalues are $\{7,3,-1\}$ and the eigenvector(s) are

$$
\{7,\{-1,1,1\}\} \quad\{3,\{-2,3,1\}\} \quad\{-1,\{-1,1,0\}\}
$$

(b) The eigenvalues are $\{-3,-3,-1\}$ and the eigenvector(s) are

$$
\{-3,\{0,-1,1\}\} \quad\{-3,\{1,0,0\}\} \quad\{-1,\{2,0,1\}\}
$$

(c) The eigenvalues are $\{2,2,-1\}$ and the eigenvector(s) are

$$
\{2,\{1,1,0\}\} \quad\{-1,\{-2,-1,2\}\}
$$

(d) The eigenvalues are $\{-1,-1,-1\}$ and the eigenvector(s) are

$$
\{-1,\{0,1,2\}\} \quad\{-1,\{1,0,0\}\}
$$

(e) The eigenvalues are $\{2,2,2\}$ and the eigenvector(s) are

$$
\{2,\{-1,0,2\}\}
$$

[65] Answers for Set No: LXV

(a) The eigenvalues are $\{5,2,-1\}$ and the eigenvector(s) are

$$
\{5,\{-1,1,1\}\} \quad\{2,\{-2,3,1\}\} \quad\{-1,\{-1,1,0\}\}
$$

(b) The eigenvalues are $\{-3,-2,-2\}$ and the eigenvector(s) are

$$
\{-3,\{-1,1,1\}\} \quad\{-2,\{-3,0,2\}\} \quad\{-2,\{0,1,0\}\}
$$

(c) The eigenvalues are $\{-2,-2,1\}$ and the eigenvector(s) are

$$
\{-2,\{-3,1,2\}\} \quad\{1,\{-1,1,1\}\}
$$

(d) The eigenvalues are $\{1,1,1\}$ and the eigenvector(s) are

$$
\{1,\{0,0,1\}\} \quad\{1,\{2,1,0\}\}
$$

(e) The eigenvalues are $\{3,3,3\}$ and the eigenvector(s) are

$$
\{3,\{1,0,1\}\}
$$

Click Here to Go Back To Questions

[66] Answers for Set No: LXVI

(a) The eigenvalues are $\{4,2,1\}$ and the eigenvector(s) are

$$
\{4,\{0,1,0\}\} \quad\{2,\{-1,6,3\}\} \quad\{1,\{-1,3,2\}\}
$$

(b) The eigenvalues are $\{3,-2,-2\}$ and the eigenvector(s) are

$$
\{3,\{-1,-1,1\}\} \quad\{-2,\{-1,0,1\}\} \quad\{-2,\{1,1,0\}\}
$$

(c) The eigenvalues are $\{3,-2,-2\}$ and the eigenvector(s) are

$$
\{3,\{-1,0,1\}\} \quad\{-2,\{-3,-1,2\}\}
$$

(d) The eigenvalues are $\{1,1,1\}$ and the eigenvector(s) are

$$
\{1,\{2,0,1\}\} \quad\{1,\{0,1,0\}\}
$$

(e) The eigenvalues are $\{3,3,3\}$ and the eigenvector(s) are

$$
\{3,\{1,0,1\}\}
$$

[67] Answers for Set No: LXVII

(a) The eigenvalues are $\{-3,-2,0\}$ and the eigenvector(s) are

$$
\{-3,\{-1,1,0\}\} \quad\{-2,\{1,-2,1\}\} \quad\{0,\{0,-3,2\}\}
$$

(b) The eigenvalues are $\{-3,-3,-1\}$ and the eigenvector(s) are

$$
\{-3,\{1,0,1\}\} \quad\{-3,\{0,1,0\}\} \quad\{-1,\{2,1,1\}\}
$$

(c) The eigenvalues are $\{-1,1,1\}$ and the eigenvector(s) are

$$
\{-1,\{2,1,2\}\} \quad\{1,\{1,1,2\}\}
$$

(d) The eigenvalues are $\{1,1,1\}$ and the eigenvector(s) are

$$
\{1,\{0,0,1\}\} \quad\{1,\{2,1,0\}\}
$$

(e) The eigenvalues are $\{-3,-3,-3\}$ and the eigenvector(s) are

$$
\{-3,\{-1,2,0\}\}
$$

[68] Answers for Set No: LXVIII

(a) The eigenvalues are $\{-4,3,-2\}$ and the eigenvector(s) are

$$
\{-4,\{-1,1,0\}\} \quad\{3,\{-1,1,1\}\} \quad\{-2,\{-2,3,1\}\}
$$

(b) The eigenvalues are $\{-3,-1,-1\}$ and the eigenvector(s) are

$$
\{-3,\{2,1,1\}\} \quad\{-1,\{1,0,1\}\} \quad\{-1,\{0,1,0\}\}
$$

(c) The eigenvalues are $\{-1,-1,0\}$ and the eigenvector(s) are

$$
\{-1,\{1,0,0\}\} \quad\{0,\{2,2,1\}\}
$$

(d) The eigenvalues are $\{2,2,2\}$ and the eigenvector(s) are

$$
\{2,\{0,-1,2\}\} \quad\{2,\{1,0,0\}\}
$$

(e) The eigenvalues are $\{-2,-2,-2\}$ and the eigenvector(s) are

$$
\{-2,\{-1,-1,1\}\}
$$

[69] Answers for Set No: LXIX

(a) The eigenvalues are $\{-3,-2,0\}$ and the eigenvector(s) are

$$
\{-3,\{-1,1,1\}\} \quad\{-2,\{-1,1,2\}\} \quad\{0,\{-1,0,1\}\}
$$

(b) The eigenvalues are $\{-2,-2,-1\}$ and the eigenvector(s) are

$$
\{-2,\{1,0,1\}\} \quad\{-2,\{-1,2,0\}\} \quad\{-1,\{2,-3,1\}\}
$$

(c) The eigenvalues are $\{2,1,1\}$ and the eigenvector(s) are

$$
\{2,\{-1,1,0\}\} \quad\{1,\{1,0,1\}\}
$$

(d) The eigenvalues are $\{3,3,3\}$ and the eigenvector(s) are

$$
\{3,\{2,0,1\}\} \quad\{3,\{1,1,0\}\}
$$

(e) The eigenvalues are $\{-2,-2,-2\}$ and the eigenvector(s) are

$$
\{-2,\{-1,1,0\}\}
$$

Click Here to Go Back To Questions

[70] Answers for Set No: LXX

(a) The eigenvalues are $\{4,3,-1\}$ and the eigenvector(s) are

$$
\{4,\{3,2,3\}\} \quad\{3,\{2,1,2\}\} \quad\{-1,\{1,0,0\}\}
$$

(b) The eigenvalues are $\{-2,-1,-1\}$ and the eigenvector(s) are

$$
\{-2,\{3,1,0\}\} \quad\{-1,\{0,0,1\}\} \quad\{-1,\{2,1,0\}\}
$$

(c) The eigenvalues are $\{3,3,2\}$ and the eigenvector(s) are

$$
\{3,\{-1,-1,1\}\} \quad\{2,\{1,1,0\}\}
$$

(d) The eigenvalues are $\{3,3,3\}$ and the eigenvector(s) are

$$
\{3,\{1,0,2\}\} \quad\{3,\{1,1,0\}\}
$$

(e) The eigenvalues are $\{-2,-2,-2\}$ and the eigenvector(s) are

$$
\{-2,\{2,1,1\}\}
$$

[71] Answers for Set No: LXXI

(a) The eigenvalues are $\{4,3,-1\}$ and the eigenvector(s) are

$$
\{4,\{1,1,2\}\} \quad\{3,\{1,2,3\}\} \quad\{-1,\{1,1,1\}\}
$$

(b) The eigenvalues are $\{3,-1,-1\}$ and the eigenvector(s) are

$$
\{3,\{1,0,1\}\} \quad\{-1,\{1,0,2\}\} \quad\{-1,\{1,1,0\}\}
$$

(c) The eigenvalues are $\{3,2,2\}$ and the eigenvector(s) are

$$
\{3,\{1,0,1\}\} \quad\{2,\{1,-1,3\}\}
$$

(d) The eigenvalues are $\{-3,-3,-3\}$ and the eigenvector(s) are

$$
\{-3,\{-1,0,1\}\} \quad\{-3,\{-1,1,0\}\}
$$

(e) The eigenvalues are $\{-2,-2,-2\}$ and the eigenvector(s) are

$$
\{-2,\{2,1,2\}\}
$$

[72] Answers for Set No: LXXII

(a) The eigenvalues are $\{-3,1,0\}$ and the eigenvector(s) are

$$
\{-3,\{1,1,0\}\} \quad\{1,\{0,-1,1\}\} \quad\{0,\{-1,-1,1\}\}
$$

(b) The eigenvalues are $\{-1,-1,0\}$ and the eigenvector(s) are

$$
\{-1,\{-3,0,1\}\} \quad\{-1,\{1,1,0\}\} \quad\{0,\{-1,1,1\}\}
$$

(c) The eigenvalues are $\{2,2,-1\}$ and the eigenvector(s) are

$$
\{2,\{1,1,0\}\} \quad\{-1,\{-2,-1,2\}\}
$$

(d) The eigenvalues are $\{-2,-2,-2\}$ and the eigenvector(s) are

$$
\{-2,\{-2,0,1\}\} \quad\{-2,\{1,1,0\}\}
$$

(e) The eigenvalues are $\{-1,-1,-1\}$ and the eigenvector(s) are

$$
\{-1,\{1,0,1\}\}
$$

[73] Answers for Set No: LXXIII

(a) The eigenvalues are $\{-2,1,0\}$ and the eigenvector(s) are

$$
\{-2,\{0,1,1\}\} \quad\{1,\{-3,8,7\}\} \quad\{0,\{-1,3,3\}\}
$$

(b) The eigenvalues are $\{-1,-1,0\}$ and the eigenvector(s) are

$$
\{-1,\{0,3,1\}\} \quad\{-1,\{1,0,0\}\} \quad\{0,\{2,2,1\}\}
$$

(c) The eigenvalues are $\{-2,-2,1\}$ and the eigenvector(s) are

$$
\{-2,\{-3,1,2\}\} \quad\{1,\{-1,1,1\}\}
$$

(d) The eigenvalues are $\{-2,-2,-2\}$ and the eigenvector(s) are

$$
\{-2,\{-1,0,1\}\} \quad\{-2,\{1,1,0\}\}
$$

(e) The eigenvalues are $\{1,1,1\}$ and the eigenvector(s) are

$$
\{1,\{0,0,1\}\}
$$

[74] Answers for Set No: LXXIV

(a) The eigenvalues are $\{-2,1,0\}$ and the eigenvector(s) are

$$
\{-2,\{1,1,0\}\} \quad\{1,\{0,-1,1\}\} \quad\{0,\{-1,-1,1\}\}
$$

(b) The eigenvalues are $\{1,1,0\}$ and the eigenvector(s) are

$$
\{1,\{0,0,1\}\} \quad\{1,\{1,1,0\}\} \quad\{0,\{2,1,0\}\}
$$

(c) The eigenvalues are $\{3,-2,-2\}$ and the eigenvector(s) are

$$
\{3,\{-1,0,1\}\} \quad\{-2,\{-3,-1,2\}\}
$$

(d) The eigenvalues are $\{-2,-2,-2\}$ and the eigenvector(s) are

$$
\{-2,\{0,0,1\}\} \quad\{-2,\{-1,1,0\}\}
$$

(e) The eigenvalues are $\{2,2,2\}$ and the eigenvector(s) are

$$
\{2,\{-1,0,2\}\}
$$

[75] Answers for Set No: LXXV

(a) The eigenvalues are $\{4,2,0\}$ and the eigenvector(s) are

$$
\{4,\{-1,1,1\}\} \quad\{2,\{-2,1,1\}\} \quad\{0,\{0,1,0\}\}
$$

(b) The eigenvalues are $\{-3,-3,1\}$ and the eigenvector(s) are

$$
\{-3,\{0,1,1\}\} \quad\{-3,\{1,0,0\}\} \quad\{1,\{-2,1,0\}\}
$$

(c) The eigenvalues are $\{-1,1,1\}$ and the eigenvector(s) are

$$
\{-1,\{2,1,2\}\} \quad\{1,\{1,1,2\}\}
$$

(d) The eigenvalues are $\{-1,-1,-1\}$ and the eigenvector(s) are

$$
\{-1,\{0,1,1\}\} \quad\{-1,\{1,0,0\}\}
$$

(e) The eigenvalues are $\{2,2,2\}$ and the eigenvector(s) are

$$
\{2,\{-1,0,2\}\}
$$

[76] Answers for Set No: LXXVI

(a) The eigenvalues are $\{4,2,0\}$ and the eigenvector(s) are

$$
\{4,\{-1,1,1\}\} \quad\{2,\{-2,1,1\}\} \quad\{0,\{-1,1,0\}\}
$$

(b) The eigenvalues are $\{1,1,0\}$ and the eigenvector(s) are

$$
\{1,\{0,-1,2\}\} \quad\{1,\{1,0,0\}\} \quad\{0,\{-3,-1,1\}\}
$$

(c) The eigenvalues are $\{-1,-1,0\}$ and the eigenvector(s) are

$$
\{-1,\{1,0,0\}\} \quad\{0,\{2,2,1\}\}
$$

(d) The eigenvalues are $\{-1,-1,-1\}$ and the eigenvector(s) are

$$
\{-1,\{0,0,1\}\} \quad\{-1,\{2,1,0\}\}
$$

(e) The eigenvalues are $\{3,3,3\}$ and the eigenvector(s) are

$$
\{3,\{1,0,1\}\}
$$

[77] Answers for Set No: LXXVII

(a) The eigenvalues are $\{-4,3,-1\}$ and the eigenvector(s) are

$$
\{-4,\{1,0,1\}\} \quad\{3,\{-1,1,1\}\} \quad\{-1,\{-1,1,0\}\}
$$

(b) The eigenvalues are $\{2,1,1\}$ and the eigenvector(s) are

$$
\{2,\{-1,0,2\}\} \quad\{1,\{0,0,1\}\} \quad\{1,\{-2,1,0\}\}
$$

(c) The eigenvalues are $\{2,1,1\}$ and the eigenvector(s) are

$$
\{2,\{-1,1,0\}\} \quad\{1,\{1,0,1\}\}
$$

(d) The eigenvalues are $\{-1,-1,-1\}$ and the eigenvector(s) are

$$
\{-1,\{0,0,1\}\} \quad\{-1,\{2,1,0\}\}
$$

(e) The eigenvalues are $\{3,3,3\}$ and the eigenvector(s) are

$$
\{3,\{1,0,1\}\}
$$

[78] Answers for Set No: LXXVIII

(a) The eigenvalues are $\{2,1,0\}$ and the eigenvector(s) are

$$
\{2,\{-2,-2,1\}\} \quad\{1,\{-2,-1,2\}\} \quad\{0,\{-1,0,1\}\}
$$

(b) The eigenvalues are $\{-2,2,2\}$ and the eigenvector(s) are

$$
\{-2,\{1,0,1\}\} \quad\{2,\{0,0,1\}\} \quad\{2,\{1,1,0\}\}
$$

(c) The eigenvalues are $\{3,3,2\}$ and the eigenvector(s) are

$$
\{3,\{-1,-1,1\}\} \quad\{2,\{1,1,0\}\}
$$

(d) The eigenvalues are $\{-1,-1,-1\}$ and the eigenvector(s) are

$$
\{-1,\{0,1,2\}\} \quad\{-1,\{1,0,0\}\}
$$

(e) The eigenvalues are $\{-3,-3,-3\}$ and the eigenvector(s) are

$$
\{-3,\{-1,2,0\}\}
$$

[79] Answers for Set No: LXXIX

(a) The eigenvalues are $\{5,3,0\}$ and the eigenvector(s) are

$$
\{5,\{1,-1,1\}\} \quad\{3,\{1,-2,1\}\} \quad\{0,\{1,0,0\}\}
$$

(b) The eigenvalues are $\{2,2,0\}$ and the eigenvector(s) are

$$
\{2,\{1,0,2\}\} \quad\{2,\{1,2,0\}\} \quad\{0,\{0,-2,1\}\}
$$

(c) The eigenvalues are $\{3,2,2\}$ and the eigenvector(s) are

$$
\{3,\{1,0,1\}\} \quad\{2,\{1,-1,3\}\}
$$

(d) The eigenvalues are $\{1,1,1\}$ and the eigenvector(s) are

$$
\{1,\{0,0,1\}\} \quad\{1,\{2,1,0\}\}
$$

(e) The eigenvalues are $\{-2,-2,-2\}$ and the eigenvector(s) are

$$
\{-2,\{-1,-1,1\}\}
$$

[80] Answers for Set No: LXXX

(a) The eigenvalues are $\{-4,-3,2\}$ and the eigenvector(s) are

$$
\{-4,\{-1,1,0\}\} \quad\{-3,\{-2,3,1\}\} \quad\{2,\{-1,1,1\}\}
$$

(b) The eigenvalues are $\{2,2,1\}$ and the eigenvector(s) are

$$
\{2,\{0,0,1\}\} \quad\{2,\{-1,1,0\}\} \quad\{1,\{1,0,1\}\}
$$

(c) The eigenvalues are $\{2,2,-1\}$ and the eigenvector(s) are

$$
\{2,\{1,1,0\}\} \quad\{-1,\{-2,-1,2\}\}
$$

(d) The eigenvalues are $\{1,1,1\}$ and the eigenvector(s) are

$$
\{1,\{2,0,1\}\} \quad\{1,\{0,1,0\}\}
$$

(e) The eigenvalues are $\{-2,-2,-2\}$ and the eigenvector(s) are

$$
\{-2,\{-1,1,0\}\}
$$

[81] Answers for Set No: LXXXI

(a) The eigenvalues are $\{-4,2,1\}$ and the eigenvector(s) are

$$
\{-4,\{-1,1,0\}\} \quad\{2,\{-1,1,1\}\} \quad\{1,\{-2,1,1\}\}
$$

(b) The eigenvalues are $\{3,3,2\}$ and the eigenvector(s) are

$$
\{3,\{-1,0,3\}\} \quad\{3,\{4,3,0\}\} \quad\{2,\{1,1,0\}\}
$$

(c) The eigenvalues are $\{-2,-2,1\}$ and the eigenvector(s) are

$$
\{-2,\{-3,1,2\}\} \quad\{1,\{-1,1,1\}\}
$$

(d) The eigenvalues are $\{1,1,1\}$ and the eigenvector(s) are

$$
\{1,\{0,0,1\}\} \quad\{1,\{2,1,0\}\}
$$

(e) The eigenvalues are $\{-2,-2,-2\}$ and the eigenvector(s) are

$$
\{-2,\{2,1,1\}\}
$$

Click Here to Go Back To Questions

[82] Answers for Set No: LXXXII

(a) The eigenvalues are $\{4,2,0\}$ and the eigenvector(s) are

$$
\{4,\{-1,1,2\}\} \quad\{2,\{-2,3,4\}\} \quad\{0,\{-1,3,3\}\}
$$

(b) The eigenvalues are $\{3,3,1\}$ and the eigenvector(s) are

$$
\{3,\{0,-1,1\}\} \quad\{3,\{1,0,0\}\} \quad\{1,\{1,0,1\}\}
$$

(c) The eigenvalues are $\{3,-2,-2\}$ and the eigenvector(s) are

$$
\{3,\{-1,0,1\}\} \quad\{-2,\{-3,-1,2\}\}
$$

(d) The eigenvalues are $\{2,2,2\}$ and the eigenvector(s) are

$$
\{2,\{0,-1,2\}\} \quad\{2,\{1,0,0\}\}
$$

(e) The eigenvalues are $\{-2,-2,-2\}$ and the eigenvector(s) are

$$
\{-2,\{2,1,2\}\}
$$

[83] Answers for Set No: LXXXIII

(a) The eigenvalues are $\{3,1,0\}$ and the eigenvector(s) are

$$
\{3,\{-1,1,0\}\} \quad\{1,\{-1,0,1\}\} \quad\{0,\{-2,-1,2\}\}
$$

(b) The eigenvalues are $\{3,3,1\}$ and the eigenvector(s) are

$$
\{3,\{-1,0,1\}\} \quad\{3,\{0,1,0\}\} \quad\{1,\{-1,-1,2\}\}
$$

(c) The eigenvalues are $\{-1,1,1\}$ and the eigenvector(s) are

$$
\{-1,\{2,1,2\}\} \quad\{1,\{1,1,2\}\}
$$

(d) The eigenvalues are $\{3,3,3\}$ and the eigenvector(s) are

$$
\{3,\{2,0,1\}\} \quad\{3,\{1,1,0\}\}
$$

(e) The eigenvalues are $\{-1,-1,-1\}$ and the eigenvector(s) are

$$
\{-1,\{1,0,1\}\}
$$

[84] Answers for Set No: LXXXIV

(a) The eigenvalues are $\{-2,-1,0\}$ and the eigenvector(s) are

$$
\{-2,\{0,1,1\}\} \quad\{-1,\{1,3,1\}\} \quad\{0,\{1,2,1\}\}
$$

(b) The eigenvalues are $\{3,3,2\}$ and the eigenvector(s) are

$$
\{3,\{0,0,1\}\} \quad\{3,\{-1,2,0\}\} \quad\{2,\{-1,1,2\}\}
$$

(c) The eigenvalues are $\{-1,-1,0\}$ and the eigenvector(s) are

$$
\{-1,\{1,0,0\}\} \quad\{0,\{2,2,1\}\}
$$

(d) The eigenvalues are $\{3,3,3\}$ and the eigenvector(s) are

$$
\{3,\{1,0,2\}\} \quad\{3,\{1,1,0\}\}
$$

(e) The eigenvalues are $\{1,1,1\}$ and the eigenvector(s) are

$$
\{1,\{0,0,1\}\}
$$

[85] Answers for Set No: LXXXV

(a) The eigenvalues are $\{2,1,0\}$ and the eigenvector(s) are

$$
\{2,\{-1,1,0\}\} \quad\{1,\{-1,2,1\}\} \quad\{0,\{-1,1,1\}\}
$$

(b) The eigenvalues are $\{-3,-3,-1\}$ and the eigenvector(s) are

$$
\{-3,\{0,-1,1\}\} \quad\{-3,\{1,0,0\}\} \quad\{-1,\{2,0,1\}\}
$$

(c) The eigenvalues are $\{2,1,1\}$ and the eigenvector(s) are

$$
\{2,\{-1,1,0\}\} \quad\{1,\{1,0,1\}\}
$$

(d) The eigenvalues are $\{-3,-3,-3\}$ and the eigenvector(s) are

$$
\{-3,\{-1,0,1\}\} \quad\{-3,\{-1,1,0\}\}
$$

(e) The eigenvalues are $\{2,2,2\}$ and the eigenvector(s) are

$$
\{2,\{-1,0,2\}\}
$$

Click Here to Go Back To Questions

[86] Answers for Set No: LXXXVI

(a) The eigenvalues are $\{5,3,1\}$ and the eigenvector(s) are

$$
\{5,\{-1,1,1\}\} \quad\{3,\{-2,1,1\}\} \quad\{1,\{-1,1,0\}\}
$$

(b) The eigenvalues are $\{-3,-2,-2\}$ and the eigenvector(s) are

$$
\{-3,\{-1,1,1\}\} \quad\{-2,\{-3,0,2\}\} \quad\{-2,\{0,1,0\}\}
$$

(c) The eigenvalues are $\{3,3,2\}$ and the eigenvector(s) are

$$
\{3,\{-1,-1,1\}\} \quad\{2,\{1,1,0\}\}
$$

(d) The eigenvalues are $\{-2,-2,-2\}$ and the eigenvector(s) are

$$
\{-2,\{-2,0,1\}\} \quad\{-2,\{1,1,0\}\}
$$

(e) The eigenvalues are $\{2,2,2\}$ and the eigenvector(s) are

$$
\{2,\{-1,0,2\}\}
$$

[87] Answers for Set No: LXXXVII

(a) The eigenvalues are $\{3,2,0\}$ and the eigenvector(s) are

$$
\{3,\{-1,1,1\}\} \quad\{2,\{-2,1,1\}\} \quad\{0,\{0,1,0\}\}
$$

(b) The eigenvalues are $\{3,-2,-2\}$ and the eigenvector(s) are

$$
\{3,\{-1,-1,1\}\} \quad\{-2,\{-1,0,1\}\} \quad\{-2,\{1,1,0\}\}
$$

(c) The eigenvalues are $\{3,2,2\}$ and the eigenvector(s) are

$$
\{3,\{1,0,1\}\} \quad\{2,\{1,-1,3\}\}
$$

(d) The eigenvalues are $\{-2,-2,-2\}$ and the eigenvector(s) are

$$
\{-2,\{-1,0,1\}\} \quad\{-2,\{1,1,0\}\}
$$

(e) The eigenvalues are $\{3,3,3\}$ and the eigenvector(s) are

$$
\{3,\{1,0,1\}\}
$$

[88] Answers for Set No: LXXXVIII

(a) The eigenvalues are $\{-5,-2,1\}$ and the eigenvector(s) are

$$
\{-5,\{-2,1,2\}\} \quad\{-2,\{-2,2,1\}\} \quad\{1,\{-1,1,0\}\}
$$

(b) The eigenvalues are $\{-3,-3,-1\}$ and the eigenvector(s) are

$$
\{-3,\{1,0,1\}\} \quad\{-3,\{0,1,0\}\} \quad\{-1,\{2,1,1\}\}
$$

(c) The eigenvalues are $\{2,2,-1\}$ and the eigenvector(s) are

$$
\{2,\{1,1,0\}\} \quad\{-1,\{-2,-1,2\}\}
$$

(d) The eigenvalues are $\{-2,-2,-2\}$ and the eigenvector(s) are

$$
\{-2,\{0,0,1\}\} \quad\{-2,\{-1,1,0\}\}
$$

(e) The eigenvalues are $\{3,3,3\}$ and the eigenvector(s) are

$$
\{3,\{1,0,1\}\}
$$

[89] Answers for Set No: LXXXIX

(a) The eigenvalues are $\{3,1,0\}$ and the eigenvector(s) are

$$
\{3,\{-1,1,1\}\} \quad\{1,\{-2,3,1\}\} \quad\{0,\{-1,1,0\}\}
$$

(b) The eigenvalues are $\{-3,-1,-1\}$ and the eigenvector(s) are

$$
\{-3,\{2,1,1\}\} \quad\{-1,\{1,0,1\}\} \quad\{-1,\{0,1,0\}\}
$$

(c) The eigenvalues are $\{-2,-2,1\}$ and the eigenvector(s) are

$$
\{-2,\{-3,1,2\}\} \quad\{1,\{-1,1,1\}\}
$$

(d) The eigenvalues are $\{-1,-1,-1\}$ and the eigenvector(s) are

$$
\{-1,\{0,1,1\}\} \quad\{-1,\{1,0,0\}\}
$$

(e) The eigenvalues are $\{-3,-3,-3\}$ and the eigenvector(s) are

$$
\{-3,\{-1,2,0\}\}
$$

Click Here to Go Back To Questions

[90] Answers for Set No: XC

(a) The eigenvalues are $\{3,2,0\}$ and the eigenvector(s) are

$$
\{3,\{-1,1,1\}\} \quad\{2,\{-2,1,1\}\} \quad\{0,\{-1,1,0\}\}
$$

(b) The eigenvalues are $\{-2,-2,-1\}$ and the eigenvector(s) are

$$
\{-2,\{1,0,1\}\} \quad\{-2,\{-1,2,0\}\} \quad\{-1,\{2,-3,1\}\}
$$

(c) The eigenvalues are $\{3,-2,-2\}$ and the eigenvector(s) are

$$
\{3,\{-1,0,1\}\} \quad\{-2,\{-3,-1,2\}\}
$$

(d) The eigenvalues are $\{-1,-1,-1\}$ and the eigenvector(s) are

$$
\{-1,\{0,0,1\}\} \quad\{-1,\{2,1,0\}\}
$$

(e) The eigenvalues are $\{-2,-2,-2\}$ and the eigenvector(s) are

$$
\{-2,\{-1,-1,1\}\}
$$

[91] Answers for Set No: XCI

(a) The eigenvalues are $\{-3,-2,0\}$ and the eigenvector(s) are

$$
\{-3,\{1,-1,3\}\} \quad\{-2,\{1,-1,2\}\} \quad\{0,\{1,0,1\}\}
$$

(b) The eigenvalues are $\{-2,-1,-1\}$ and the eigenvector(s) are

$$
\{-2,\{3,1,0\}\} \quad\{-1,\{0,0,1\}\} \quad\{-1,\{2,1,0\}\}
$$

(c) The eigenvalues are $\{-1,1,1\}$ and the eigenvector(s) are

$$
\{-1,\{2,1,2\}\} \quad\{1,\{1,1,2\}\}
$$

(d) The eigenvalues are $\{-1,-1,-1\}$ and the eigenvector(s) are

$$
\{-1,\{0,0,1\}\} \quad\{-1,\{2,1,0\}\}
$$

(e) The eigenvalues are $\{-2,-2,-2\}$ and the eigenvector(s) are

$$
\{-2,\{-1,1,0\}\}
$$

[92] Answers for Set No: XCII
(a) The eigenvalues are $\{3,-1,0\}$ and the eigenvector(s) are

$$
\{3,\{0,-1,1\}\} \quad\{-1,\{1,-3,1\}\} \quad\{0,\{1,-2,1\}\}
$$

(b) The eigenvalues are $\{3,-1,-1\}$ and the eigenvector(s) are

$$
\{3,\{1,0,1\}\} \quad\{-1,\{1,0,2\}\} \quad\{-1,\{1,1,0\}\}
$$

(c) The eigenvalues are $\{-1,-1,0\}$ and the eigenvector(s) are

$$
\{-1,\{1,0,0\}\} \quad\{0,\{2,2,1\}\}
$$

(d) The eigenvalues are $\{-1,-1,-1\}$ and the eigenvector(s) are

$$
\{-1,\{0,1,2\}\} \quad\{-1,\{1,0,0\}\}
$$

(e) The eigenvalues are $\{-2,-2,-2\}$ and the eigenvector(s) are

$$
\{-2,\{2,1,1\}\}
$$

[93] Answers for Set No: XCIII

(a) The eigenvalues are $\{7,2,-1\}$ and the eigenvector(s) are

$$
\{7,\{-1,1,1\}\} \quad\{2,\{-2,3,1\}\} \quad\{-1,\{-1,1,0\}\}
$$

(b) The eigenvalues are $\{-1,-1,0\}$ and the eigenvector(s) are

$$
\{-1,\{-3,0,1\}\} \quad\{-1,\{1,1,0\}\} \quad\{0,\{-1,1,1\}\}
$$

(c) The eigenvalues are $\{2,1,1\}$ and the eigenvector(s) are

$$
\{2,\{-1,1,0\}\} \quad\{1,\{1,0,1\}\}
$$

(d) The eigenvalues are $\{1,1,1\}$ and the eigenvector(s) are

$$
\{1,\{0,0,1\}\} \quad\{1,\{2,1,0\}\}
$$

(e) The eigenvalues are $\{-2,-2,-2\}$ and the eigenvector(s) are

$$
\{-2,\{2,1,2\}\}
$$

Click Here to Go Back To Questions

[94] Answers for Set No: XCIV

(a) The eigenvalues are $\{5,3,0\}$ and the eigenvector(s) are

$$
\{5,\{1,3,1\}\} \quad\{3,\{1,2,1\}\} \quad\{0,\{0,1,1\}\}
$$

(b) The eigenvalues are $\{-1,-1,0\}$ and the eigenvector(s) are

$$
\{-1,\{0,3,1\}\} \quad\{-1,\{1,0,0\}\} \quad\{0,\{2,2,1\}\}
$$

(c) The eigenvalues are $\{3,3,2\}$ and the eigenvector(s) are

$$
\{3,\{-1,-1,1\}\} \quad\{2,\{1,1,0\}\}
$$

(d) The eigenvalues are $\{1,1,1\}$ and the eigenvector(s) are

$$
\{1,\{2,0,1\}\} \quad\{1,\{0,1,0\}\}
$$

(e) The eigenvalues are $\{-1,-1,-1\}$ and the eigenvector(s) are

$$
\{-1,\{1,0,1\}\}
$$

[95] Answers for Set No: XCV

(a) The eigenvalues are $\{-2,1,0\}$ and the eigenvector(s) are

$$
\{-2,\{0,-3,2\}\} \quad\{1,\{1,0,0\}\} \quad\{0,\{-1,-1,1\}\}
$$

(b) The eigenvalues are $\{1,1,0\}$ and the eigenvector(s) are

$$
\{1,\{0,0,1\}\} \quad\{1,\{1,1,0\}\} \quad\{0,\{2,1,0\}\}
$$

(c) The eigenvalues are $\{3,2,2\}$ and the eigenvector(s) are

$$
\{3,\{1,0,1\}\} \quad\{2,\{1,-1,3\}\}
$$

(d) The eigenvalues are $\{1,1,1\}$ and the eigenvector(s) are

$$
\{1,\{0,0,1\}\} \quad\{1,\{2,1,0\}\}
$$

(e) The eigenvalues are $\{1,1,1\}$ and the eigenvector(s) are

$$
\{1,\{0,0,1\}\}
$$

[96] Answers for Set No: XCVI

(a) The eigenvalues are $\{4,-2,1\}$ and the eigenvector(s) are

$$
\{4,\{0,-1,1\}\} \quad\{-2,\{-1,-1,2\}\} \quad\{1,\{-1,-3,3\}\}
$$

(b) The eigenvalues are $\{-3,-3,1\}$ and the eigenvector(s) are

$$
\{-3,\{0,1,1\}\} \quad\{-3,\{1,0,0\}\} \quad\{1,\{-2,1,0\}\}
$$

(c) The eigenvalues are $\{2,2,-1\}$ and the eigenvector(s) are

$$
\{2,\{1,1,0\}\} \quad\{-1,\{-2,-1,2\}\}
$$

(d) The eigenvalues are $\{2,2,2\}$ and the eigenvector(s) are

$$
\{2,\{0,-1,2\}\} \quad\{2,\{1,0,0\}\}
$$

(e) The eigenvalues are $\{2,2,2\}$ and the eigenvector(s) are

$$
\{2,\{-1,0,2\}\}
$$

[97] Answers for Set No: XCVII

(a) The eigenvalues are $\{4,2,-1\}$ and the eigenvector(s) are

$$
\{4,\{-2,-2,1\}\} \quad\{2,\{-2,-1,1\}\} \quad\{-1,\{-1,0,1\}\}
$$

(b) The eigenvalues are $\{1,1,0\}$ and the eigenvector(s) are

$$
\{1,\{0,-1,2\}\} \quad\{1,\{1,0,0\}\} \quad\{0,\{-3,-1,1\}\}
$$

(c) The eigenvalues are $\{-2,-2,1\}$ and the eigenvector(s) are

$$
\{-2,\{-3,1,2\}\} \quad\{1,\{-1,1,1\}\}
$$

(d) The eigenvalues are $\{3,3,3\}$ and the eigenvector(s) are

$$
\{3,\{2,0,1\}\} \quad\{3,\{1,1,0\}\}
$$

(e) The eigenvalues are $\{2,2,2\}$ and the eigenvector(s) are

$$
\{2,\{-1,0,2\}\}
$$

Click Here to Go Back To Questions

[98] Answers for Set No: XCVIII

(a) The eigenvalues are $\{3,1,0\}$ and the eigenvector(s) are

$$
\{3,\{1,1,2\}\} \quad\{1,\{1,2,3\}\} \quad\{0,\{1,1,1\}\}
$$

(b) The eigenvalues are $\{2,1,1\}$ and the eigenvector(s) are

$$
\{2,\{-1,0,2\}\} \quad\{1,\{0,0,1\}\} \quad\{1,\{-2,1,0\}\}
$$

(c) The eigenvalues are $\{3,-2,-2\}$ and the eigenvector(s) are

$$
\{3,\{-1,0,1\}\} \quad\{-2,\{-3,-1,2\}\}
$$

(d) The eigenvalues are $\{3,3,3\}$ and the eigenvector(s) are

$$
\{3,\{1,0,2\}\} \quad\{3,\{1,1,0\}\}
$$

(e) The eigenvalues are $\{3,3,3\}$ and the eigenvector(s) are

$$
\{3,\{1,0,1\}\}
$$

[99] Answers for Set No: XCIX

(a) The eigenvalues are $\{4,1,0\}$ and the eigenvector(s) are

$$
\{4,\{1,-2,2\}\} \quad\{1,\{1,-2,3\}\} \quad\{0,\{1,-1,2\}\}
$$

(b) The eigenvalues are $\{-2,2,2\}$ and the eigenvector(s) are

$$
\{-2,\{1,0,1\}\} \quad\{2,\{0,0,1\}\} \quad\{2,\{1,1,0\}\}
$$

(c) The eigenvalues are $\{-1,1,1\}$ and the eigenvector(s) are

$$
\{-1,\{2,1,2\}\} \quad\{1,\{1,1,2\}\}
$$

(d) The eigenvalues are $\{-3,-3,-3\}$ and the eigenvector(s) are

$$
\{-3,\{-1,0,1\}\} \quad\{-3,\{-1,1,0\}\}
$$

(e) The eigenvalues are $\{3,3,3\}$ and the eigenvector(s) are

$$
\{3,\{1,0,1\}\}
$$

[100] Answers for Set No: C

(a) The eigenvalues are $\{3,2,1\}$ and the eigenvector(s) are

$$
\{3,\{-2,0,1\}\} \quad\{2,\{-3,-1,2\}\} \quad\{1,\{-2,-1,1\}\}
$$

(b) The eigenvalues are $\{2,2,0\}$ and the eigenvector(s) are

$$
\{2,\{1,0,2\}\} \quad\{2,\{1,2,0\}\} \quad\{0,\{0,-2,1\}\}
$$

(c) The eigenvalues are $\{-1,-1,0\}$ and the eigenvector(s) are

$$
\{-1,\{1,0,0\}\} \quad\{0,\{2,2,1\}\}
$$

(d) The eigenvalues are $\{-2,-2,-2\}$ and the eigenvector(s) are

$$
\{-2,\{-2,0,1\}\} \quad\{-2,\{1,1,0\}\}
$$

(e) The eigenvalues are $\{-3,-3,-3\}$ and the eigenvector(s) are

$$
\{-3,\{-1,2,0\}\}
$$

[101] Answers for Set No: CI

(a) The eigenvalues are $\{6,3,1\}$ and the eigenvector(s) are

$$
\{6,\{-1,1,0\}\} \quad\{3,\{-1,0,1\}\} \quad\{1,\{-2,-1,2\}\}
$$

(b) The eigenvalues are $\{2,2,1\}$ and the eigenvector(s) are

$$
\{2,\{0,0,1\}\} \quad\{2,\{-1,1,0\}\} \quad\{1,\{1,0,1\}\}
$$

(c) The eigenvalues are $\{2,1,1\}$ and the eigenvector(s) are

$$
\{2,\{-1,1,0\}\} \quad\{1,\{1,0,1\}\}
$$

(d) The eigenvalues are $\{-2,-2,-2\}$ and the eigenvector(s) are

$$
\{-2,\{-1,0,1\}\} \quad\{-2,\{1,1,0\}\}
$$

(e) The eigenvalues are $\{-2,-2,-2\}$ and the eigenvector(s) are

$$
\{-2,\{-1,-1,1\}\}
$$

Click Here to Go Back To Questions

[102] Answers for Set No: CII

(a) The eigenvalues are $\{3,2,1\}$ and the eigenvector(s) are

$$
\{3,\{-1,1,2\}\} \quad\{2,\{-3,2,6\}\} \quad\{1,\{-1,0,1\}\}
$$

(b) The eigenvalues are $\{3,3,2\}$ and the eigenvector(s) are

$$
\{3,\{-1,0,3\}\} \quad\{3,\{4,3,0\}\} \quad\{2,\{1,1,0\}\}
$$

(c) The eigenvalues are $\{3,3,2\}$ and the eigenvector(s) are

$$
\{3,\{-1,-1,1\}\} \quad\{2,\{1,1,0\}\}
$$

(d) The eigenvalues are $\{-2,-2,-2\}$ and the eigenvector(s) are

$$
\{-2,\{0,0,1\}\} \quad\{-2,\{-1,1,0\}\}
$$

(e) The eigenvalues are $\{-2,-2,-2\}$ and the eigenvector(s) are

$$
\{-2,\{-1,1,0\}\}
$$

[103] Answers for Set No: CIII

(a) The eigenvalues are $\{3,-2,0\}$ and the eigenvector(s) are

$$
\{3,\{0,-1,1\}\} \quad\{-2,\{-1,-3,1\}\} \quad\{0,\{-1,-3,2\}\}
$$

(b) The eigenvalues are $\{3,3,1\}$ and the eigenvector(s) are

$$
\{3,\{0,-1,1\}\} \quad\{3,\{1,0,0\}\} \quad\{1,\{1,0,1\}\}
$$

(c) The eigenvalues are $\{3,2,2\}$ and the eigenvector(s) are

$$
\{3,\{1,0,1\}\} \quad\{2,\{1,-1,3\}\}
$$

(d) The eigenvalues are $\{-1,-1,-1\}$ and the eigenvector(s) are

$$
\{-1,\{0,1,1\}\} \quad\{-1,\{1,0,0\}\}
$$

(e) The eigenvalues are $\{-2,-2,-2\}$ and the eigenvector(s) are

$$
\{-2,\{2,1,1\}\}
$$

Click Here to Go Back To Questions

[104] Answers for Set No: CIV

(a) The eigenvalues are $\{4,1,0\}$ and the eigenvector(s) are

$$
\{4,\{-1,1,0\}\} \quad\{1,\{-1,0,1\}\} \quad\{0,\{-2,-1,2\}\}
$$

(b) The eigenvalues are $\{3,3,1\}$ and the eigenvector(s) are

$$
\{3,\{-1,0,1\}\} \quad\{3,\{0,1,0\}\} \quad\{1,\{-1,-1,2\}\}
$$

(c) The eigenvalues are $\{2,2,-1\}$ and the eigenvector(s) are

$$
\{2,\{1,1,0\}\} \quad\{-1,\{-2,-1,2\}\}
$$

(d) The eigenvalues are $\{-1,-1,-1\}$ and the eigenvector(s) are

$$
\{-1,\{0,0,1\}\} \quad\{-1,\{2,1,0\}\}
$$

(e) The eigenvalues are $\{-2,-2,-2\}$ and the eigenvector(s) are

$$
\{-2,\{2,1,2\}\}
$$

[105] Answers for Set No: CV
(a) The eigenvalues are $\{4,3,-2\}$ and the eigenvector(s) are

$$
\{4,\{-1,1,1\}\} \quad\{3,\{-2,2,1\}\} \quad\{-2,\{0,1,0\}\}
$$

(b) The eigenvalues are $\{3,3,2\}$ and the eigenvector(s) are

$$
\{3,\{0,0,1\}\} \quad\{3,\{-1,2,0\}\} \quad\{2,\{-1,1,2\}\}
$$

(c) The eigenvalues are $\{-2,-2,1\}$ and the eigenvector(s) are

$$
\{-2,\{-3,1,2\}\} \quad\{1,\{-1,1,1\}\}
$$

(d) The eigenvalues are $\{-1,-1,-1\}$ and the eigenvector(s) are

$$
\{-1,\{0,0,1\}\} \quad\{-1,\{2,1,0\}\}
$$

(e) The eigenvalues are $\{-1,-1,-1\}$ and the eigenvector(s) are

$$
\{-1,\{1,0,1\}\}
$$

Click Here to Go Back To Questions

[106] Answers for Set No: CVI

(a) The eigenvalues are $\{4,2,0\}$ and the eigenvector(s) are

$$
\{4,\{0,-1,1\}\} \quad\{2,\{-1,-3,3\}\} \quad\{0,\{-1,-1,2\}\}
$$

(b) The eigenvalues are $\{-3,-3,-1\}$ and the eigenvector(s) are

$$
\{-3,\{0,-1,1\}\} \quad\{-3,\{1,0,0\}\} \quad\{-1,\{2,0,1\}\}
$$

(c) The eigenvalues are $\{3,-2,-2\}$ and the eigenvector(s) are

$$
\{3,\{-1,0,1\}\} \quad\{-2,\{-3,-1,2\}\}
$$

(d) The eigenvalues are $\{-1,-1,-1\}$ and the eigenvector(s) are

$$
\{-1,\{0,1,2\}\} \quad\{-1,\{1,0,0\}\}
$$

(e) The eigenvalues are $\{1,1,1\}$ and the eigenvector(s) are

$$
\{1,\{0,0,1\}\}
$$

[107] Answers for Set No: CVII
(a) The eigenvalues are $\{-2,1,0\}$ and the eigenvector(s) are

$$
\{-2,\{1,-3,1\}\} \quad\{1,\{0,-1,1\}\} \quad\{0,\{1,-2,1\}\}
$$

(b) The eigenvalues are $\{-3,-2,-2\}$ and the eigenvector(s) are

$$
\{-3,\{-1,1,1\}\} \quad\{-2,\{-3,0,2\}\} \quad\{-2,\{0,1,0\}\}
$$

(c) The eigenvalues are $\{-1,1,1\}$ and the eigenvector(s) are

$$
\{-1,\{2,1,2\}\} \quad\{1,\{1,1,2\}\}
$$

(d) The eigenvalues are $\{1,1,1\}$ and the eigenvector(s) are

$$
\{1,\{0,0,1\}\} \quad\{1,\{2,1,0\}\}
$$

(e) The eigenvalues are $\{2,2,2\}$ and the eigenvector(s) are

$$
\{2,\{-1,0,2\}\}
$$

[108] Answers for Set No: CVIII

(a) The eigenvalues are $\{3,1,0\}$ and the eigenvector(s) are

$$
\{3,\{-2,-2,1\}\} \quad\{1,\{-2,-1,2\}\} \quad\{0,\{-1,0,1\}\}
$$

(b) The eigenvalues are $\{3,-2,-2\}$ and the eigenvector(s) are

$$
\{3,\{-1,-1,1\}\} \quad\{-2,\{-1,0,1\}\} \quad\{-2,\{1,1,0\}\}
$$

(c) The eigenvalues are $\{-1,-1,0\}$ and the eigenvector(s) are

$$
\{-1,\{1,0,0\}\} \quad\{0,\{2,2,1\}\}
$$

(d) The eigenvalues are $\{1,1,1\}$ and the eigenvector(s) are

$$
\{1,\{2,0,1\}\} \quad\{1,\{0,1,0\}\}
$$

(e) The eigenvalues are $\{2,2,2\}$ and the eigenvector(s) are

$$
\{2,\{-1,0,2\}\}
$$

[109] Answers for Set No: CIX

(a) The eigenvalues are $\{-2,-1,0\}$ and the eigenvector(s) are

$$
\{-2,\{-1,1,1\}\} \quad\{-1,\{-1,1,0\}\} \quad\{0,\{-1,0,2\}\}
$$

(b) The eigenvalues are $\{-3,-3,-1\}$ and the eigenvector(s) are

$$
\{-3,\{1,0,1\}\} \quad\{-3,\{0,1,0\}\} \quad\{-1,\{2,1,1\}\}
$$

(c) The eigenvalues are $\{2,1,1\}$ and the eigenvector(s) are

$$
\{2,\{-1,1,0\}\} \quad\{1,\{1,0,1\}\}
$$

(d) The eigenvalues are $\{1,1,1\}$ and the eigenvector(s) are

$$
\{1,\{0,0,1\}\} \quad\{1,\{2,1,0\}\}
$$

(e) The eigenvalues are $\{3,3,3\}$ and the eigenvector(s) are

$$
\{3,\{1,0,1\}\}
$$

[110] Answers for Set No: CX

(a) The eigenvalues are $\{3,-2,1\}$ and the eigenvector(s) are

$$
\{3,\{1,0,1\}\} \quad\{-2,\{-1,1,1\}\} \quad\{1,\{2,-1,1\}\}
$$

(b) The eigenvalues are $\{-3,-1,-1\}$ and the eigenvector(s) are

$$
\{-3,\{2,1,1\}\} \quad\{-1,\{1,0,1\}\} \quad\{-1,\{0,1,0\}\}
$$

(c) The eigenvalues are $\{3,3,2\}$ and the eigenvector(s) are

$$
\{3,\{-1,-1,1\}\} \quad\{2,\{1,1,0\}\}
$$

(d) The eigenvalues are $\{2,2,2\}$ and the eigenvector(s) are

$$
\{2,\{0,-1,2\}\} \quad\{2,\{1,0,0\}\}
$$

(e) The eigenvalues are $\{3,3,3\}$ and the eigenvector(s) are

$$
\{3,\{1,0,1\}\}
$$

[111] Answers for Set No: CXI

(a) The eigenvalues are $\{3,2,-1\}$ and the eigenvector(s) are

$$
\{3,\{0,-1,1\}\} \quad\{2,\{-1,-3,3\}\} \quad\{-1,\{-1,-1,2\}\}
$$

(b) The eigenvalues are $\{-2,-2,-1\}$ and the eigenvector(s) are

$$
\{-2,\{1,0,1\}\} \quad\{-2,\{-1,2,0\}\} \quad\{-1,\{2,-3,1\}\}
$$

(c) The eigenvalues are $\{3,2,2\}$ and the eigenvector(s) are

$$
\{3,\{1,0,1\}\} \quad\{2,\{1,-1,3\}\}
$$

(d) The eigenvalues are $\{3,3,3\}$ and the eigenvector(s) are

$$
\{3,\{2,0,1\}\} \quad\{3,\{1,1,0\}\}
$$

(e) The eigenvalues are $\{-3,-3,-3\}$ and the eigenvector(s) are

$$
\{-3,\{-1,2,0\}\}
$$

[112] Answers for Set No: CXII

(a) The eigenvalues are $\{3,2,-1\}$ and the eigenvector(s) are

$$
\{3,\{3,-2,3\}\} \quad\{2,\{3,-2,2\}\} \quad\{-1,\{-1,1,0\}\}
$$

(b) The eigenvalues are $\{-2,-1,-1\}$ and the eigenvector(s) are

$$
\{-2,\{3,1,0\}\} \quad\{-1,\{0,0,1\}\} \quad\{-1,\{2,1,0\}\}
$$

(c) The eigenvalues are $\{2,2,-1\}$ and the eigenvector(s) are

$$
\{2,\{1,1,0\}\} \quad\{-1,\{-2,-1,2\}\}
$$

(d) The eigenvalues are $\{3,3,3\}$ and the eigenvector(s) are

$$
\{3,\{1,0,2\}\} \quad\{3,\{1,1,0\}\}
$$

(e) The eigenvalues are $\{-2,-2,-2\}$ and the eigenvector(s) are

$$
\{-2,\{-1,-1,1\}\}
$$

[113] Answers for Set No: CXIII
(a) The eigenvalues are $\{3,1,0\}$ and the eigenvector(s) are

$$
\{3,\{-2,0,1\}\} \quad\{1,\{-3,-1,2\}\} \quad\{0,\{-2,-1,1\}\}
$$

(b) The eigenvalues are $\{3,-1,-1\}$ and the eigenvector(s) are

$$
\{3,\{1,0,1\}\} \quad\{-1,\{1,0,2\}\} \quad\{-1,\{1,1,0\}\}
$$

(c) The eigenvalues are $\{-2,-2,1\}$ and the eigenvector(s) are

$$
\{-2,\{-3,1,2\}\} \quad\{1,\{-1,1,1\}\}
$$

(d) The eigenvalues are $\{-3,-3,-3\}$ and the eigenvector(s) are

$$
\{-3,\{-1,0,1\}\} \quad\{-3,\{-1,1,0\}\}
$$

(e) The eigenvalues are $\{-2,-2,-2\}$ and the eigenvector(s) are

$$
\{-2,\{-1,1,0\}\}
$$

Click Here to Go Back To Questions

[114] Answers for Set No: CXIV

(a) The eigenvalues are $\{2,1,0\}$ and the eigenvector(s) are

$$
\{2,\{1,2,1\}\} \quad\{1,\{1,3,1\}\} \quad\{0,\{0,1,1\}\}
$$

(b) The eigenvalues are $\{-1,-1,0\}$ and the eigenvector(s) are

$$
\{-1,\{-3,0,1\}\} \quad\{-1,\{1,1,0\}\} \quad\{0,\{-1,1,1\}\}
$$

(c) The eigenvalues are $\{3,-2,-2\}$ and the eigenvector(s) are

$$
\{3,\{-1,0,1\}\} \quad\{-2,\{-3,-1,2\}\}
$$

(d) The eigenvalues are $\{-2,-2,-2\}$ and the eigenvector(s) are

$$
\{-2,\{-2,0,1\}\} \quad\{-2,\{1,1,0\}\}
$$

(e) The eigenvalues are $\{-2,-2,-2\}$ and the eigenvector(s) are

$$
\{-2,\{2,1,1\}\}
$$

[115] Answers for Set No: CXV

(a) The eigenvalues are $\{-3,1,0\}$ and the eigenvector(s) are

$$
\{-3,\{1,0,1\}\} \quad\{1,\{3,-1,1\}\} \quad\{0,\{2,-1,1\}\}
$$

(b) The eigenvalues are $\{-1,-1,0\}$ and the eigenvector(s) are

$$
\{-1,\{0,3,1\}\} \quad\{-1,\{1,0,0\}\} \quad\{0,\{2,2,1\}\}
$$

(c) The eigenvalues are $\{-1,1,1\}$ and the eigenvector(s) are

$$
\{-1,\{2,1,2\}\} \quad\{1,\{1,1,2\}\}
$$

(d) The eigenvalues are $\{-2,-2,-2\}$ and the eigenvector(s) are

$$
\{-2,\{-1,0,1\}\} \quad\{-2,\{1,1,0\}\}
$$

(e) The eigenvalues are $\{-2,-2,-2\}$ and the eigenvector(s) are

$$
\{-2,\{2,1,2\}\}
$$

Click Here to Go Back To Questions

[116] Answers for Set No: CXVI

(a) The eigenvalues are $\{6,1,0\}$ and the eigenvector(s) are

$$
\{6,\{0,1,0\}\} \quad\{1,\{3,6,2\}\} \quad\{0,\{1,2,1\}\}
$$

(b) The eigenvalues are $\{1,1,0\}$ and the eigenvector(s) are

$$
\{1,\{0,0,1\}\} \quad\{1,\{1,1,0\}\} \quad\{0,\{2,1,0\}\}
$$

(c) The eigenvalues are $\{-1,-1,0\}$ and the eigenvector(s) are

$$
\{-1,\{1,0,0\}\} \quad\{0,\{2,2,1\}\}
$$

(d) The eigenvalues are $\{-2,-2,-2\}$ and the eigenvector(s) are

$$
\{-2,\{0,0,1\}\} \quad\{-2,\{-1,1,0\}\}
$$

(e) The eigenvalues are $\{-1,-1,-1\}$ and the eigenvector(s) are

$$
\{-1,\{1,0,1\}\}
$$

[117] Answers for Set No: CXVII

(a) The eigenvalues are $\{3,2,1\}$ and the eigenvector(s) are

$$
\{3,\{2,3,0\}\} \quad\{2,\{-2,-4,1\}\} \quad\{1,\{-1,-3,1\}\}
$$

(b) The eigenvalues are $\{-3,-3,1\}$ and the eigenvector(s) are

$$
\{-3,\{0,1,1\}\} \quad\{-3,\{1,0,0\}\} \quad\{1,\{-2,1,0\}\}
$$

(c) The eigenvalues are $\{2,1,1\}$ and the eigenvector(s) are

$$
\{2,\{-1,1,0\}\} \quad\{1,\{1,0,1\}\}
$$

(d) The eigenvalues are $\{-1,-1,-1\}$ and the eigenvector(s) are

$$
\{-1,\{0,1,1\}\} \quad\{-1,\{1,0,0\}\}
$$

(e) The eigenvalues are $\{1,1,1\}$ and the eigenvector(s) are

$$
\{1,\{0,0,1\}\}
$$

[118] Answers for Set No: CXVIII
(a) The eigenvalues are $\{-2,1,0\}$ and the eigenvector(s) are

$$
\{-2,\{-1,1,2\}\} \quad\{1,\{-1,0,1\}\} \quad\{0,\{-1,1,1\}\}
$$

(b) The eigenvalues are $\{1,1,0\}$ and the eigenvector(s) are

$$
\{1,\{0,-1,2\}\} \quad\{1,\{1,0,0\}\} \quad\{0,\{-3,-1,1\}\}
$$

(c) The eigenvalues are $\{3,3,2\}$ and the eigenvector(s) are

$$
\{3,\{-1,-1,1\}\} \quad\{2,\{1,1,0\}\}
$$

(d) The eigenvalues are $\{-1,-1,-1\}$ and the eigenvector(s) are

$$
\{-1,\{0,0,1\}\} \quad\{-1,\{2,1,0\}\}
$$

(e) The eigenvalues are $\{2,2,2\}$ and the eigenvector(s) are

$$
\{2,\{-1,0,2\}\}
$$

[119] Answers for Set No: CXIX
(a) The eigenvalues are $\{3,2,0\}$ and the eigenvector(s) are

$$
\{3,\{1,2,2\}\} \quad\{2,\{2,3,4\}\} \quad\{0,\{0,1,1\}\}
$$

(b) The eigenvalues are $\{2,1,1\}$ and the eigenvector(s) are

$$
\{2,\{-1,0,2\}\} \quad\{1,\{0,0,1\}\} \quad\{1,\{-2,1,0\}\}
$$

(c) The eigenvalues are $\{3,2,2\}$ and the eigenvector(s) are

$$
\{3,\{1,0,1\}\} \quad\{2,\{1,-1,3\}\}
$$

(d) The eigenvalues are $\{-1,-1,-1\}$ and the eigenvector(s) are

$$
\{-1,\{0,0,1\}\} \quad\{-1,\{2,1,0\}\}
$$

(e) The eigenvalues are $\{2,2,2\}$ and the eigenvector(s) are

$$
\{2,\{-1,0,2\}\}
$$

[120] Answers for Set No: CXX

(a) The eigenvalues are $\{-3,2,1\}$ and the eigenvector(s) are

$$
\{-3,\{-1,0,1\}\} \quad\{2,\{-2,-2,1\}\} \quad\{1,\{-2,-1,1\}\}
$$

(b) The eigenvalues are $\{-2,2,2\}$ and the eigenvector(s) are

$$
\{-2,\{1,0,1\}\} \quad\{2,\{0,0,1\}\} \quad\{2,\{1,1,0\}\}
$$

(c) The eigenvalues are $\{2,2,-1\}$ and the eigenvector(s) are

$$
\{2,\{1,1,0\}\} \quad\{-1,\{-2,-1,2\}\}
$$

(d) The eigenvalues are $\{-1,-1,-1\}$ and the eigenvector(s) are

$$
\{-1,\{0,1,2\}\} \quad\{-1,\{1,0,0\}\}
$$

(e) The eigenvalues are $\{3,3,3\}$ and the eigenvector(s) are

$$
\{3,\{1,0,1\}\}
$$

[121] Answers for Set No: CXXI
(a) The eigenvalues are $\{5,1,0\}$ and the eigenvector(s) are

$$
\{5,\{-1,1,1\}\} \quad\{1,\{-2,3,1\}\} \quad\{0,\{-1,1,0\}\}
$$

(b) The eigenvalues are $\{2,2,0\}$ and the eigenvector(s) are

$$
\{2,\{1,0,2\}\} \quad\{2,\{1,2,0\}\} \quad\{0,\{0,-2,1\}\}
$$

(c) The eigenvalues are $\{-2,-2,1\}$ and the eigenvector(s) are

$$
\{-2,\{-3,1,2\}\} \quad\{1,\{-1,1,1\}\}
$$

(d) The eigenvalues are $\{1,1,1\}$ and the eigenvector(s) are

$$
\{1,\{0,0,1\}\} \quad\{1,\{2,1,0\}\}
$$

(e) The eigenvalues are $\{3,3,3\}$ and the eigenvector(s) are

$$
\{3,\{1,0,1\}\}
$$

[122] Answers for Set No: CXXII

(a) The eigenvalues are $\{-3,2,1\}$ and the eigenvector(s) are

$$
\{-3,\{-1,1,0\}\} \quad\{2,\{3,-2,3\}\} \quad\{1,\{3,-2,2\}\}
$$

(b) The eigenvalues are $\{2,2,1\}$ and the eigenvector(s) are

$$
\{2,\{0,0,1\}\} \quad\{2,\{-1,1,0\}\} \quad\{1,\{1,0,1\}\}
$$

(c) The eigenvalues are $\{3,-2,-2\}$ and the eigenvector(s) are

$$
\{3,\{-1,0,1\}\} \quad\{-2,\{-3,-1,2\}\}
$$

(d) The eigenvalues are $\{1,1,1\}$ and the eigenvector(s) are

$$
\{1,\{2,0,1\}\} \quad\{1,\{0,1,0\}\}
$$

(e) The eigenvalues are $\{-3,-3,-3\}$ and the eigenvector(s) are

$$
\{-3,\{-1,2,0\}\}
$$

[123] Answers for Set No: CXXIII
(a) The eigenvalues are $\{4,-3,0\}$ and the eigenvector(s) are

$$
\{4,\{-1,-1,1\}\} \quad\{-3,\{1,1,0\}\} \quad\{0,\{0,-1,1\}\}
$$

(b) The eigenvalues are $\{3,3,2\}$ and the eigenvector(s) are

$$
\{3,\{-1,0,3\}\} \quad\{3,\{4,3,0\}\} \quad\{2,\{1,1,0\}\}
$$

(c) The eigenvalues are $\{-1,1,1\}$ and the eigenvector(s) are

$$
\{-1,\{2,1,2\}\} \quad\{1,\{1,1,2\}\}
$$

(d) The eigenvalues are $\{1,1,1\}$ and the eigenvector(s) are

$$
\{1,\{0,0,1\}\} \quad\{1,\{2,1,0\}\}
$$

(e) The eigenvalues are $\{-2,-2,-2\}$ and the eigenvector(s) are

$$
\{-2,\{-1,-1,1\}\}
$$

Click Here to Go Back To Questions

[124] Answers for Set No: CXXIV

(a) The eigenvalues are $\{6,2,1\}$ and the eigenvector(s) are

$$
\{6,\{-1,1,0\}\} \quad\{2,\{-1,0,1\}\} \quad\{1,\{-2,-1,2\}\}
$$

(b) The eigenvalues are $\{3,3,1\}$ and the eigenvector(s) are

$$
\{3,\{0,-1,1\}\} \quad\{3,\{1,0,0\}\} \quad\{1,\{1,0,1\}\}
$$

(c) The eigenvalues are $\{-1,-1,0\}$ and the eigenvector(s) are

$$
\{-1,\{1,0,0\}\} \quad\{0,\{2,2,1\}\}
$$

(d) The eigenvalues are $\{2,2,2\}$ and the eigenvector(s) are

$$
\{2,\{0,-1,2\}\} \quad\{2,\{1,0,0\}\}
$$

(e) The eigenvalues are $\{-2,-2,-2\}$ and the eigenvector(s) are

$$
\{-2,\{-1,1,0\}\}
$$

[125] Answers for Set No: CXXV
(a) The eigenvalues are $\{3,2,0\}$ and the eigenvector(s) are

$$
\{3,\{-2,2,1\}\} \quad\{2,\{-1,1,1\}\} \quad\{0,\{0,1,0\}\}
$$

(b) The eigenvalues are $\{3,3,1\}$ and the eigenvector(s) are

$$
\{3,\{-1,0,1\}\} \quad\{3,\{0,1,0\}\} \quad\{1,\{-1,-1,2\}\}
$$

(c) The eigenvalues are $\{2,1,1\}$ and the eigenvector(s) are

$$
\{2,\{-1,1,0\}\} \quad\{1,\{1,0,1\}\}
$$

(d) The eigenvalues are $\{3,3,3\}$ and the eigenvector(s) are

$$
\{3,\{2,0,1\}\} \quad\{3,\{1,1,0\}\}
$$

(e) The eigenvalues are $\{-2,-2,-2\}$ and the eigenvector(s) are

$$
\{-2,\{2,1,1\}\}
$$

Click Here to Go Back To Questions

[126] Answers for Set No: CXXVI

(a) The eigenvalues are $\{3,2,-1\}$ and the eigenvector(s) are

$$
\{3,\{-2,1,1\}\} \quad\{2,\{-1,1,1\}\} \quad\{-1,\{0,1,0\}\}
$$

(b) The eigenvalues are $\{3,3,2\}$ and the eigenvector(s) are

$$
\{3,\{0,0,1\}\} \quad\{3,\{-1,2,0\}\} \quad\{2,\{-1,1,2\}\}
$$

(c) The eigenvalues are $\{3,3,2\}$ and the eigenvector(s) are

$$
\{3,\{-1,-1,1\}\} \quad\{2,\{1,1,0\}\}
$$

(d) The eigenvalues are $\{3,3,3\}$ and the eigenvector(s) are

$$
\{3,\{1,0,2\}\} \quad\{3,\{1,1,0\}\}
$$

(e) The eigenvalues are $\{-2,-2,-2\}$ and the eigenvector(s) are

$$
\{-2,\{2,1,2\}\}
$$

[127] Answers for Set No: CXXVII

(a) The eigenvalues are $\{-7,-2,1\}$ and the eigenvector(s) are

$$
\{-7,\{0,1,0\}\} \quad\{-2,\{-1,2,1\}\} \quad\{1,\{-2,2,1\}\}
$$

(b) The eigenvalues are $\{-3,-3,-1\}$ and the eigenvector(s) are

$$
\{-3,\{0,-1,1\}\} \quad\{-3,\{1,0,0\}\} \quad\{-1,\{2,0,1\}\}
$$

(c) The eigenvalues are $\{3,2,2\}$ and the eigenvector(s) are

$$
\{3,\{1,0,1\}\} \quad\{2,\{1,-1,3\}\}
$$

(d) The eigenvalues are $\{-3,-3,-3\}$ and the eigenvector(s) are

$$
\{-3,\{-1,0,1\}\} \quad\{-3,\{-1,1,0\}\}
$$

(e) The eigenvalues are $\{-1,-1,-1\}$ and the eigenvector(s) are

$$
\{-1,\{1,0,1\}\}
$$

Click Here to Go Back To Questions

[128] Answers for Set No: CXXVIII

(a) The eigenvalues are $\{2,1,0\}$ and the eigenvector(s) are

$$
\{2,\{0,1,0\}\} \quad\{1,\{-2,3,1\}\} \quad\{0,\{-3,4,2\}\}
$$

(b) The eigenvalues are $\{-3,-2,-2\}$ and the eigenvector(s) are

$$
\{-3,\{-1,1,1\}\} \quad\{-2,\{-3,0,2\}\} \quad\{-2,\{0,1,0\}\}
$$

(c) The eigenvalues are $\{2,2,-1\}$ and the eigenvector(s) are

$$
\{2,\{1,1,0\}\} \quad\{-1,\{-2,-1,2\}\}
$$

(d) The eigenvalues are $\{-2,-2,-2\}$ and the eigenvector(s) are

$$
\{-2,\{-2,0,1\}\} \quad\{-2,\{1,1,0\}\}
$$

(e) The eigenvalues are $\{1,1,1\}$ and the eigenvector(s) are

$$
\{1,\{0,0,1\}\}
$$

[129] Answers for Set No: CXXIX
(a) The eigenvalues are $\{6,1,0\}$ and the eigenvector(s) are

$$
\{6,\{0,1,0\}\} \quad\{1,\{-2,3,1\}\} \quad\{0,\{-3,4,2\}\}
$$

(b) The eigenvalues are $\{3,-2,-2\}$ and the eigenvector(s) are

$$
\{3,\{-1,-1,1\}\} \quad\{-2,\{-1,0,1\}\} \quad\{-2,\{1,1,0\}\}
$$

(c) The eigenvalues are $\{-2,-2,1\}$ and the eigenvector(s) are

$$
\{-2,\{-3,1,2\}\} \quad\{1,\{-1,1,1\}\}
$$

(d) The eigenvalues are $\{-2,-2,-2\}$ and the eigenvector(s) are

$$
\{-2,\{-1,0,1\}\} \quad\{-2,\{1,1,0\}\}
$$

(e) The eigenvalues are $\{2,2,2\}$ and the eigenvector(s) are

$$
\{2,\{-1,0,2\}\}
$$

Click Here to Go Back To Questions

[130] Answers for Set No: CXXX

(a) The eigenvalues are $\{7,1,0\}$ and the eigenvector(s) are

$$
\{7,\{0,1,0\}\} \quad\{1,\{-2,3,1\}\} \quad\{0,\{-3,4,2\}\}
$$

(b) The eigenvalues are $\{-3,-3,-1\}$ and the eigenvector(s) are

$$
\{-3,\{1,0,1\}\} \quad\{-3,\{0,1,0\}\} \quad\{-1,\{2,1,1\}\}
$$

(c) The eigenvalues are $\{3,-2,-2\}$ and the eigenvector(s) are

$$
\{3,\{-1,0,1\}\} \quad\{-2,\{-3,-1,2\}\}
$$

(d) The eigenvalues are $\{-2,-2,-2\}$ and the eigenvector(s) are

$$
\{-2,\{0,0,1\}\} \quad\{-2,\{-1,1,0\}\}
$$

(e) The eigenvalues are $\{2,2,2\}$ and the eigenvector(s) are

$$
\{2,\{-1,0,2\}\}
$$

[131] Answers for Set No: CXXXI
(a) The eigenvalues are $\{3,-2,-1\}$ and the eigenvector(s) are

$$
\{3,\{-1,0,1\}\} \quad\{-2,\{-1,1,2\}\} \quad\{-1,\{-1,1,1\}\}
$$

(b) The eigenvalues are $\{-3,-1,-1\}$ and the eigenvector(s) are

$$
\{-3,\{2,1,1\}\} \quad\{-1,\{1,0,1\}\} \quad\{-1,\{0,1,0\}\}
$$

(c) The eigenvalues are $\{-1,1,1\}$ and the eigenvector(s) are

$$
\{-1,\{2,1,2\}\} \quad\{1,\{1,1,2\}\}
$$

(d) The eigenvalues are $\{-1,-1,-1\}$ and the eigenvector(s) are

$$
\{-1,\{0,1,1\}\} \quad\{-1,\{1,0,0\}\}
$$

(e) The eigenvalues are $\{3,3,3\}$ and the eigenvector(s) are

$$
\{3,\{1,0,1\}\}
$$

[132] Answers for Set No: CXXXII

(a) The eigenvalues are $\{3,2,-1\}$ and the eigenvector(s) are

$$
\{3,\{-2,1,1\}\} \quad\{2,\{-1,1,1\}\} \quad\{-1,\{-1,1,0\}\}
$$

(b) The eigenvalues are $\{-2,-2,-1\}$ and the eigenvector(s) are

$$
\{-2,\{1,0,1\}\} \quad\{-2,\{-1,2,0\}\} \quad\{-1,\{2,-3,1\}\}
$$

(c) The eigenvalues are $\{-1,-1,0\}$ and the eigenvector(s) are

$$
\{-1,\{1,0,0\}\} \quad\{0,\{2,2,1\}\}
$$

(d) The eigenvalues are $\{-1,-1,-1\}$ and the eigenvector(s) are

$$
\{-1,\{0,0,1\}\} \quad\{-1,\{2,1,0\}\}
$$

(e) The eigenvalues are $\{3,3,3\}$ and the eigenvector(s) are

$$
\{3,\{1,0,1\}\}
$$

[133] Answers for Set No: CXXXIII
(a) The eigenvalues are $\{4,1,0\}$ and the eigenvector(s) are

$$
\{4,\{-2,0,1\}\} \quad\{1,\{-3,-1,2\}\} \quad\{0,\{-2,-1,1\}\}
$$

(b) The eigenvalues are $\{-2,-1,-1\}$ and the eigenvector(s) are

$$
\{-2,\{3,1,0\}\} \quad\{-1,\{0,0,1\}\} \quad\{-1,\{2,1,0\}\}
$$

(c) The eigenvalues are $\{2,1,1\}$ and the eigenvector(s) are

$$
\{2,\{-1,1,0\}\} \quad\{1,\{1,0,1\}\}
$$

(d) The eigenvalues are $\{-1,-1,-1\}$ and the eigenvector(s) are

$$
\{-1,\{0,0,1\}\} \quad\{-1,\{2,1,0\}\}
$$

(e) The eigenvalues are $\{-3,-3,-3\}$ and the eigenvector(s) are

$$
\{-3,\{-1,2,0\}\}
$$

[134] Answers for Set No: CXXXIV

(a) The eigenvalues are $\{5,-2,1\}$ and the eigenvector(s) are

$$
\{5,\{-1,-1,1\}\} \quad\{-2,\{1,1,0\}\} \quad\{1,\{0,-1,1\}\}
$$

(b) The eigenvalues are $\{3,-1,-1\}$ and the eigenvector(s) are

$$
\{3,\{1,0,1\}\} \quad\{-1,\{1,0,2\}\} \quad\{-1,\{1,1,0\}\}
$$

(c) The eigenvalues are $\{3,3,2\}$ and the eigenvector(s) are

$$
\{3,\{-1,-1,1\}\} \quad\{2,\{1,1,0\}\}
$$

(d) The eigenvalues are $\{-1,-1,-1\}$ and the eigenvector(s) are

$$
\{-1,\{0,1,2\}\} \quad\{-1,\{1,0,0\}\}
$$

(e) The eigenvalues are $\{-2,-2,-2\}$ and the eigenvector(s) are

$$
\{-2,\{-1,-1,1\}\}
$$

[135] Answers for Set No: CXXXV

(a) The eigenvalues are $\{5,2,-1\}$ and the eigenvector(s) are

$$
\{5,\{-1,-1,1\}\} \quad\{2,\{0,-1,1\}\} \quad\{-1,\{1,1,0\}\}
$$

(b) The eigenvalues are $\{-1,-1,0\}$ and the eigenvector(s) are

$$
\{-1,\{-3,0,1\}\} \quad\{-1,\{1,1,0\}\} \quad\{0,\{-1,1,1\}\}
$$

(c) The eigenvalues are $\{3,2,2\}$ and the eigenvector(s) are

$$
\{3,\{1,0,1\}\} \quad\{2,\{1,-1,3\}\}
$$

(d) The eigenvalues are $\{1,1,1\}$ and the eigenvector(s) are

$$
\{1,\{0,0,1\}\} \quad\{1,\{2,1,0\}\}
$$

(e) The eigenvalues are $\{-2,-2,-2\}$ and the eigenvector(s) are

$$
\{-2,\{-1,1,0\}\}
$$

[136] Answers for Set No: CXXXVI

(a) The eigenvalues are $\{3,2,0\}$ and the eigenvector(s) are

$$
\{3,\{-3,-1,1\}\} \quad\{2,\{1,1,0\}\} \quad\{0,\{0,1,1\}\}
$$

(b) The eigenvalues are $\{-1,-1,0\}$ and the eigenvector(s) are

$$
\{-1,\{0,3,1\}\} \quad\{-1,\{1,0,0\}\} \quad\{0,\{2,2,1\}\}
$$

(c) The eigenvalues are $\{2,2,-1\}$ and the eigenvector(s) are

$$
\{2,\{1,1,0\}\} \quad\{-1,\{-2,-1,2\}\}
$$

(d) The eigenvalues are $\{1,1,1\}$ and the eigenvector(s) are

$$
\{1,\{2,0,1\}\} \quad\{1,\{0,1,0\}\}
$$

(e) The eigenvalues are $\{-2,-2,-2\}$ and the eigenvector(s) are

$$
\{-2,\{2,1,1\}\}
$$

[137] Answers for Set No: CXXXVII

(a) The eigenvalues are $\{3,2,-1\}$ and the eigenvector(s) are

$$
\{3,\{3,-1,1\}\} \quad\{2,\{2,-1,1\}\} \quad\{-1,\{1,0,1\}\}
$$

(b) The eigenvalues are $\{1,1,0\}$ and the eigenvector(s) are

$$
\{1,\{0,0,1\}\} \quad\{1,\{1,1,0\}\} \quad\{0,\{2,1,0\}\}
$$

(c) The eigenvalues are $\{-2,-2,1\}$ and the eigenvector(s) are

$$
\{-2,\{-3,1,2\}\} \quad\{1,\{-1,1,1\}\}
$$

(d) The eigenvalues are $\{1,1,1\}$ and the eigenvector(s) are

$$
\{1,\{0,0,1\}\} \quad\{1,\{2,1,0\}\}
$$

(e) The eigenvalues are $\{-2,-2,-2\}$ and the eigenvector(s) are

$$
\{-2,\{2,1,2\}\}
$$

Click Here to Go Back To Questions
[138] Answers for Set No: CXXXVIII
(a) The eigenvalues are $\{3,1,0\}$ and the eigenvector(s) are

$$
\{3,\{-2,1,1\}\} \quad\{1,\{-1,1,1\}\} \quad\{0,\{0,1,0\}\}
$$

(b) The eigenvalues are $\{-3,-3,1\}$ and the eigenvector(s) are

$$
\{-3,\{0,1,1\}\} \quad\{-3,\{1,0,0\}\} \quad\{1,\{-2,1,0\}\}
$$

(c) The eigenvalues are $\{3,-2,-2\}$ and the eigenvector(s) are

$$
\{3,\{-1,0,1\}\} \quad\{-2,\{-3,-1,2\}\}
$$

(d) The eigenvalues are $\{2,2,2\}$ and the eigenvector(s) are

$$
\{2,\{0,-1,2\}\} \quad\{2,\{1,0,0\}\}
$$

(e) The eigenvalues are $\{-1,-1,-1\}$ and the eigenvector(s) are

$$
\{-1,\{1,0,1\}\}
$$

[139] Answers for Set No: CXXXIX

(a) The eigenvalues are $\{-7,2,-1\}$ and the eigenvector(s) are

$$
\{-7,\{0,1,0\}\} \quad\{2,\{-2,2,1\}\} \quad\{-1,\{-1,2,1\}\}
$$

(b) The eigenvalues are $\{1,1,0\}$ and the eigenvector(s) are

$$
\{1,\{0,-1,2\}\} \quad\{1,\{1,0,0\}\} \quad\{0,\{-3,-1,1\}\}
$$

(c) The eigenvalues are $\{-1,1,1\}$ and the eigenvector(s) are

$$
\{-1,\{2,1,2\}\} \quad\{1,\{1,1,2\}\}
$$

(d) The eigenvalues are $\{3,3,3\}$ and the eigenvector(s) are

$$
\{3,\{2,0,1\}\} \quad\{3,\{1,1,0\}\}
$$

(e) The eigenvalues are $\{1,1,1\}$ and the eigenvector(s) are

$$
\{1,\{0,0,1\}\}
$$

[140] Answers for Set No: CXL

(a) The eigenvalues are $\{-3,2,-1\}$ and the eigenvector(s) are

$$
\{-3,\{0,1,0\}\} \quad\{2,\{-2,1,1\}\} \quad\{-1,\{-1,1,1\}\}
$$

(b) The eigenvalues are $\{2,1,1\}$ and the eigenvector(s) are

$$
\{2,\{-1,0,2\}\} \quad\{1,\{0,0,1\}\} \quad\{1,\{-2,1,0\}\}
$$

(c) The eigenvalues are $\{-1,-1,0\}$ and the eigenvector(s) are

$$
\{-1,\{1,0,0\}\} \quad\{0,\{2,2,1\}\}
$$

(d) The eigenvalues are $\{3,3,3\}$ and the eigenvector(s) are

$$
\{3,\{1,0,2\}\} \quad\{3,\{1,1,0\}\}
$$

(e) The eigenvalues are $\{2,2,2\}$ and the eigenvector(s) are

$$
\{2,\{-1,0,2\}\}
$$

[141] Answers for Set No: CXLI
(a) The eigenvalues are $\{3,2,0\}$ and the eigenvector(s) are

$$
\{3,\{-1,0,1\}\} \quad\{2,\{-1,1,1\}\} \quad\{0,\{-1,1,2\}\}
$$

(b) The eigenvalues are $\{-2,2,2\}$ and the eigenvector(s) are

$$
\{-2,\{1,0,1\}\} \quad\{2,\{0,0,1\}\} \quad\{2,\{1,1,0\}\}
$$

(c) The eigenvalues are $\{2,1,1\}$ and the eigenvector(s) are

$$
\{2,\{-1,1,0\}\} \quad\{1,\{1,0,1\}\}
$$

(d) The eigenvalues are $\{-3,-3,-3\}$ and the eigenvector(s) are

$$
\{-3,\{-1,0,1\}\} \quad\{-3,\{-1,1,0\}\}
$$

(e) The eigenvalues are $\{2,2,2\}$ and the eigenvector(s) are

$$
\{2,\{-1,0,2\}\}
$$

Click Here to Go Back To Questions

[142] Answers for Set No: CXLII

(a) The eigenvalues are $\{2,1,0\}$ and the eigenvector(s) are

$$
\{2,\{4,-3,1\}\} \quad\{1,\{5,-4,2\}\} \quad\{0,\{2,-2,1\}\}
$$

(b) The eigenvalues are $\{2,2,0\}$ and the eigenvector(s) are

$$
\{2,\{1,0,2\}\} \quad\{2,\{1,2,0\}\} \quad\{0,\{0,-2,1\}\}
$$

(c) The eigenvalues are $\{3,3,2\}$ and the eigenvector(s) are

$$
\{3,\{-1,-1,1\}\} \quad\{2,\{1,1,0\}\}
$$

(d) The eigenvalues are $\{-2,-2,-2\}$ and the eigenvector(s) are

$$
\{-2,\{-2,0,1\}\} \quad\{-2,\{1,1,0\}\}
$$

(e) The eigenvalues are $\{3,3,3\}$ and the eigenvector(s) are

$$
\{3,\{1,0,1\}\}
$$

[143] Answers for Set No: CXLIII

(a) The eigenvalues are $\{3,1,0\}$ and the eigenvector(s) are

$$
\{3,\{1,-1,1\}\} \quad\{1,\{1,-2,1\}\} \quad\{0,\{2,-5,3\}\}
$$

(b) The eigenvalues are $\{2,2,1\}$ and the eigenvector(s) are

$$
\{2,\{0,0,1\}\} \quad\{2,\{-1,1,0\}\} \quad\{1,\{1,0,1\}\}
$$

(c) The eigenvalues are $\{3,2,2\}$ and the eigenvector(s) are

$$
\{3,\{1,0,1\}\} \quad\{2,\{1,-1,3\}\}
$$

(d) The eigenvalues are $\{-2,-2,-2\}$ and the eigenvector(s) are

$$
\{-2,\{-1,0,1\}\} \quad\{-2,\{1,1,0\}\}
$$

(e) The eigenvalues are $\{3,3,3\}$ and the eigenvector(s) are

$$
\{3,\{1,0,1\}\}
$$

[144] Answers for Set No: CXLIV

(a) The eigenvalues are $\{3,1,0\}$ and the eigenvector(s) are

$$
\{3,\{-1,1,0\}\} \quad\{1,\{1,-4,2\}\} \quad\{0,\{0,-1,1\}\}
$$

(b) The eigenvalues are $\{3,3,2\}$ and the eigenvector(s) are

$$
\{3,\{-1,0,3\}\} \quad\{3,\{4,3,0\}\} \quad\{2,\{1,1,0\}\}
$$

(c) The eigenvalues are $\{2,2,-1\}$ and the eigenvector(s) are

$$
\{2,\{1,1,0\}\} \quad\{-1,\{-2,-1,2\}\}
$$

(d) The eigenvalues are $\{-2,-2,-2\}$ and the eigenvector(s) are

$$
\{-2,\{0,0,1\}\} \quad\{-2,\{-1,1,0\}\}
$$

(e) The eigenvalues are $\{-3,-3,-3\}$ and the eigenvector(s) are

$$
\{-3,\{-1,2,0\}\}
$$

[145] Answers for Set No: CXLV

(a) The eigenvalues are $\{2,1,0\}$ and the eigenvector(s) are

$$
\{2,\{2,1,1\}\} \quad\{1,\{3,2,1\}\} \quad\{0,\{5,4,2\}\}
$$

(b) The eigenvalues are $\{3,3,1\}$ and the eigenvector(s) are

$$
\{3,\{0,-1,1\}\} \quad\{3,\{1,0,0\}\} \quad\{1,\{1,0,1\}\}
$$

(c) The eigenvalues are $\{-2,-2,1\}$ and the eigenvector(s) are

$$
\{-2,\{-3,1,2\}\} \quad\{1,\{-1,1,1\}\}
$$

(d) The eigenvalues are $\{-1,-1,-1\}$ and the eigenvector(s) are

$$
\{-1,\{0,1,1\}\} \quad\{-1,\{1,0,0\}\}
$$

(e) The eigenvalues are $\{-2,-2,-2\}$ and the eigenvector(s) are

$$
\{-2,\{-1,-1,1\}\}
$$

Click Here to Go Back To Questions

[146] Answers for Set No: CXLVI

(a) The eigenvalues are $\{2,-1,0\}$ and the eigenvector(s) are

$$
\{2,\{3,3,2\}\} \quad\{-1,\{0,1,0\}\} \quad\{0,\{1,1,1\}\}
$$

(b) The eigenvalues are $\{3,3,1\}$ and the eigenvector(s) are

$$
\{3,\{-1,0,1\}\} \quad\{3,\{0,1,0\}\} \quad\{1,\{-1,-1,2\}\}
$$

(c) The eigenvalues are $\{3,-2,-2\}$ and the eigenvector(s) are

$$
\{3,\{-1,0,1\}\} \quad\{-2,\{-3,-1,2\}\}
$$

(d) The eigenvalues are $\{-1,-1,-1\}$ and the eigenvector(s) are

$$
\{-1,\{0,0,1\}\} \quad\{-1,\{2,1,0\}\}
$$

(e) The eigenvalues are $\{-2,-2,-2\}$ and the eigenvector(s) are

$$
\{-2,\{-1,1,0\}\}
$$

[147] Answers for Set No: CXLVII

(a) The eigenvalues are $\{4,3,1\}$ and the eigenvector(s) are

$$
\{4,\{-1,-1,2\}\} \quad\{3,\{-1,-3,3\}\} \quad\{1,\{0,1,0\}\}
$$

(b) The eigenvalues are $\{3,3,2\}$ and the eigenvector(s) are

$$
\{3,\{0,0,1\}\} \quad\{3,\{-1,2,0\}\} \quad\{2,\{-1,1,2\}\}
$$

(c) The eigenvalues are $\{-1,1,1\}$ and the eigenvector(s) are

$$
\{-1,\{2,1,2\}\} \quad\{1,\{1,1,2\}\}
$$

(d) The eigenvalues are $\{-1,-1,-1\}$ and the eigenvector(s) are

$$
\{-1,\{0,0,1\}\} \quad\{-1,\{2,1,0\}\}
$$

(e) The eigenvalues are $\{-2,-2,-2\}$ and the eigenvector(s) are

$$
\{-2,\{2,1,1\}\}
$$

Click Here to Go Back To Questions

[148] Answers for Set No: CXLVIII

(a) The eigenvalues are $\{3,2,0\}$ and the eigenvector(s) are

$$
\{3,\{4,-2,1\}\} \quad\{2,\{3,-2,1\}\} \quad\{0,\{-1,1,0\}\}
$$

(b) The eigenvalues are $\{-3,-3,-1\}$ and the eigenvector(s) are

$$
\{-3,\{0,-1,1\}\} \quad\{-3,\{1,0,0\}\} \quad\{-1,\{2,0,1\}\}
$$

(c) The eigenvalues are $\{-1,-1,0\}$ and the eigenvector(s) are

$$
\{-1,\{1,0,0\}\} \quad\{0,\{2,2,1\}\}
$$

(d) The eigenvalues are $\{-1,-1,-1\}$ and the eigenvector(s) are

$$
\{-1,\{0,1,2\}\} \quad\{-1,\{1,0,0\}\}
$$

(e) The eigenvalues are $\{-2,-2,-2\}$ and the eigenvector(s) are

$$
\{-2,\{2,1,2\}\}
$$

[149] Answers for Set No: CXLIX
(a) The eigenvalues are $\{7,1,0\}$ and the eigenvector(s) are

$$
\{7,\{-1,-1,1\}\} \quad\{1,\{0,-1,1\}\} \quad\{0,\{1,1,0\}\}
$$

(b) The eigenvalues are $\{-3,-2,-2\}$ and the eigenvector(s) are

$$
\{-3,\{-1,1,1\}\} \quad\{-2,\{-3,0,2\}\} \quad\{-2,\{0,1,0\}\}
$$

(c) The eigenvalues are $\{2,1,1\}$ and the eigenvector(s) are

$$
\{2,\{-1,1,0\}\} \quad\{1,\{1,0,1\}\}
$$

(d) The eigenvalues are $\{1,1,1\}$ and the eigenvector(s) are

$$
\{1,\{0,0,1\}\} \quad\{1,\{2,1,0\}\}
$$

(e) The eigenvalues are $\{-1,-1,-1\}$ and the eigenvector(s) are

$$
\{-1,\{1,0,1\}\}
$$

Click Here to Go Back To Questions
[150] Answers for Set No: CL
(a) The eigenvalues are $\{3,-2,1\}$ and the eigenvector(s) are

$$
\{3,\{-3,-1,1\}\} \quad\{-2,\{0,1,1\}\} \quad\{1,\{1,1,0\}\}
$$

(b) The eigenvalues are $\{3,-2,-2\}$ and the eigenvector(s) are

$$
\{3,\{-1,-1,1\}\} \quad\{-2,\{-1,0,1\}\} \quad\{-2,\{1,1,0\}\}
$$

(c) The eigenvalues are $\{3,3,2\}$ and the eigenvector(s) are

$$
\{3,\{-1,-1,1\}\} \quad\{2,\{1,1,0\}\}
$$

(d) The eigenvalues are $\{1,1,1\}$ and the eigenvector(s) are

$$
\{1,\{2,0,1\}\} \quad\{1,\{0,1,0\}\}
$$

(e) The eigenvalues are $\{1,1,1\}$ and the eigenvector(s) are

$$
\{1,\{0,0,1\}\}
$$

