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Summary

In this section we prove the Poynting theorem about conservation of energy
for system of charges and electromagnetic fields. Two important points
emerge.

1. The fields have energy with energy density given by

Uem =
ǫ0

2
| ~E|2 +

1

2µ0

| ~B|2 (1)

2. The energy lost or gained by an physical system, volume V , is to be
viewed as flowing from the boundary of the system.

3. The rate of flow of energy through the boundary is given by the Poynt-
ing vector

S =
1

µ0

( ~E × ~B), (2)
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1 Energy momentum conservation — Poynting theorem

In section we will discuss conservation of energy for charges in interaction
with electromagnetic fields. An expression for rate of doing work by electro-
magnetic forces will be derived. This will then lead us to the rate of change
of mechanical energy. The resulting conservation law is a local conservation
law. For more details see end of this section.

Uem =
ǫ0

2
| ~E|2 +

1

2µ0

| ~B|2 (3)

It may be noted that the above form of energy per unit volume coincides
with with sum of expression obtained for charge and current distributions
for stationary charge and current distributions.

The new insight that we gain here is the possibility of exchange of energy
between charges, currents and electromagnetic fields.

The resulting equation will be of the form of equation of continuity and
is a local conservation law for energy for charges and electromagnetic fields.
For mechanical systems, the

When a point charged particle moves in electromagnetic field, it experi-
ences a force

~F = q( ~E + ~v × ~B). (4)

For a continuous charge distribution, the force on a small volume elementdV
is given by

∆~F = dq( ~E + ~v × ~B) = (ρdV )( ~E + ~v × ~B). (5)

We now wish to compute work done on charges present in a small volume
∆V . The displacement of the charge element in time ∆t is ~v∆t and hence the
work done by the electromagnetic forces in time ∆t is ∆~F ·~v∆t. Therefore,
work done per sec on all charges is given by

dW

dt
=

y

V

ρ( ~E + ~v × ~B).~v dV. (6)

By work energy theorem, this work done will be equal to the rate of change
of mechanical energy (kinetic energy etc.) .

dW

dt
=

y

V

ρ( ~E + ~v × ~B).~vdV.

=
y

V

ρ~v · ~EdV =
y

V

~j · ~EdV

=
y

V

1

µ0

~E · (∇× ~B)dV − ǫ0

y
~E ·

∂ ~E

∂t
dV. (7)

where the Maxwell’s fourth equation

∇× ~B = µ0
~j + ǫ0µ0

∂ ~E

∂t
(8)
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has been used to write the current density, ~(j), in terms of ~E, ~B. Next we
use the vector calculus identity

∇ · ( ~E × ~B) = ~B · (∇× ~E)− ~E · (∇× ~B). (9)

On use of the Maxwell’s equation ∇× ~E = −
∂ ~B

∂t
, Eq.(8) becomes

~E · (∇× ~B) = −∇ · ( ~E × ~B)− ~B · (∇× ~E)

= −∇ · ( ~E × ~B)− ~B ·
(∂ ~B

∂t

)

. (10)

Eq.(7) and (10)lead to the following equation

dW

dt
= ǫ0

y

V

~E ·
∂ ~E

∂t
dV −

1

µ0

y

V

~B ·
(∂ ~B

∂t

)

−
1

µ0

y

V

∇ · ( ~E × ~B)

= ǫ0

y

V

~E ·
∂ ~E

∂t
dV −

1

µ0

y

V

~B ·
(∂ ~B

∂t

)

−
1

µ0

y

S

( ~E × ~B) (11)

where S is the surface enclosing the volume V . Introducing the Poynting
vector

S =
1

µ0

( ~E × ~B), (12)

and using Gauss divergence theorem, we rewrite Eq.(10) in the form

dW

dt
= −

y

V

∂

∂t

(

ǫ0

2
| ~E|2 +

1

2µ0

| ~B|2
)

−
x

S

n̂ · ~SdS. (13)

or

d

dt

[

W +
y

V

(

ǫ0

2
| ~E|2 +

1

2µ0

| ~B|2
)

]

= −
x

S

n̂ · ~SdS. (14)

The expression

Uem =
ǫ0

2
| ~E|2 +

1

2µ0

| ~B|2 (15)

is the energy density associated with the electromagnetic field. This ex-
pression already appears for energy density of static charge and current
distributions.

✍ Eq.(15) has the interpretation that
change in energy of charges per sec + change in energy of e.m. field
in volume V = flow of energy through the surface Sper sec, and the
flow of energy per unit area per sec is given by the Poynting vector ~S

Here the following points should not be missed.
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� that the electromagnetic fields carry energy density

� electromagnetic fields can exchange energy energy with a mechanical
systems

� energy conservation, just like charge conservation is a local conserva-
tion law

✍ You should think about it carefully, and ask yourself if these are new
results not present in case of static fields.
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You May Also Be Interested In

A conservation law in Newtonian mechanics means that a physical quantity
G(q((t), q̇) is constant along the physical trajectory. Thus when q(t) is a
solution of equations of motion,G is independent of time.

dG

dt
= 0

In special relativity the conservation laws must have a form treating space
and time on equal footing. Thus they are always expressed as an equation
of continuity

dG0

dt
−∇ · ~G = 0. (16)

where the four component object transforms G = (G0, ~G) like a four vector.
All conservation laws must have this from.

Examples are charge conservation, and energy and momentum conser-
vation etc.
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