NodeId::UnDef

Trigonometric and hyperbolic functions

Singular points and analytic property

- 1. Polynomial in z is analytic everywhere.
- 2. Rational functions P(z)/Q(z), where P(z), Q(z) are polynomials, are analytic everywhere except where Q(z) is zero.
- 3. $\exp(\lambda z)$, $\sin(\lambda z)\cos(\lambda z)$, $\sinh(\lambda z)\cosh(\lambda z)$ are also analytic everywhere.
- 4. other trigonometric and hyperbolic functions have singular points as given in the table.

Functions	Singular points
$\tan z, \sec z$	$z = (2n+1)\pi/2$
$\cot z, \operatorname{cosec} z$	$z = n\pi$
$\tanh z, \operatorname{sech} z$	$z = (2n+1)i\pi/2$
$\operatorname{coth} z, \operatorname{cosech} z$	$z = n\pi i$

5. $\exp(\lambda z)$ does not become zero anywhere because

$$\exp(\lambda z)\exp(-\lambda z) = 1$$

So, for example, $f(z) = \frac{\sin z}{\exp(-z)}$ is analytic everywhere.

CV-PTR-05001	Created:	Printed: Augus	st $4, 2$	2022		
PROOFS	LICENSE: CREAT	TIVE COMMONS		NO WARRANT	y, Implied	OR OTHERWISE
Open MEXFile	CV-PTR-0500)1.pdf		Node ??		NodeId::UnDef