
DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  

Time Dependent Perturbation Theory

A. K. Kapoor

October 11, 2010

§ 1 Introduction
QM-

24-
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L1

⊲
Not all problems can be solved exactly. Therefore, we need approximation methods.
We have so far discussed approximation methods for energy eigen values and eigen
functions. These methods give approximate solution of the eigenvalue problem

Hψn = Enψn. (1)

The next class of problems, we are interested, require us to solve the time dependent
Schrödinger equation

i~
∂ψ

∂t
= Ĥψ. (2)

The exact solution of Eq.(2) can be written as

ψ = exp
(−iĤ(t− t0)

~

)

ψ(x, t0) (3)

This is valid when Ĥ is independent of time. Eq.(3) is equivalent to

ψ(x, t) =
∑

n

Cn exp
(−iEn(t− t0)

~

)

ψn(x), (4)

where ψn are eigenfunctions of the full Hamiltonian and Cn are the expansion coef-
ficients which are computed from the knowledge of the wave function at an initial
time t = t0. Thus

ψ(x, t0) =
∑

n

Cnψn(x) (5)

Cn =

∫

ψ∗
n(x)ψ(x, t0)dx. (6)

This method, outlined above in Eq.(3)-Eq.(6) can be used only if Ĥ is independent of
time and the solution of time independent Eq.(1) can be found. We need a different
approach if the Hamiltonian Ĥ depends on time, or if Ĥ is time independent but
the energy eigenvalues and eigenfunctions cannot be found exactly. There are three
important methods to solve time dependent Schrodinger equation approximately.
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• In the [time dependent perturbation theory] we split the total Hamiltonain as

H = H0 +H ′ (7)

where H0, called unperturbed Hamiltonian, is independent of time and is such
that the time dependent Schrodinger equation for H0

i~
∂ψ

∂t
= H0ψ (8)

can be solved exactly. The perturbing Hamiltonian H ′ may or may not depend
on time. Both cases fall under time dependent perturbation theory when we
need to solve the time dependent Schrodinger equation.

• If the time dependence of the Hamiltonian is small, it varies slowly with time,
the approximation scheme is known as adiabatic approximation. It is assumed
that the instantaneous eigenvalues and eigenvectors of the Hamiltonian are
known at ecah instant of time.

• In sudden approximation it is assumed that the time variation of the Hamil-
tonian is very fast and the Hamiltonian changes with time over only a very
short interval of time. For example, consider a particle in a box of size L. If
the walls of the box move and the size of the box is suddenly doubled, we may
apply sudden approximation.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Status : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ◭ QM-24-01-
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§ 2 Time Dependent Perturbation Theory
QM-

24-

02-

L1

⊲
In the perturbation theory, one assumes that the total Hamiltonian can be spilt as

H = H0 +H ′ (9)

where H0 is independent of time and is such that its eigenvalues and eigen functions,
i.e., the solutions of the equation

H0un = Enun (10)

are known exactly. H ′ is a perturbation and its matrix elements are assumed to be
small compared to the matrix elements of H0. H

′ may or may not, depend on time,
but H0 must be independent of time. We shall write

H = H0 + λH ′ (11)

for intermediate steps and set λ = 1 in the end.
Note that the states represented by un are stationary states only when H ′ = 0.

If the full Hamiltonian H is different from H0, (H ′ 6= 0), the states represented by
un will not be stationary states. Thus if, at some initial time t0, the system is in
the state represented by one of the eigenfunctions ui, it will not remain in the same
state afterwards. We would like to compute the probability of system being found
in a state of uf at a later time.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Status : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ◭ QM-24-02-

L1;

2



DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  

§ 3 Transition Amplitude
QM-

24-

03-

L1

⊲
We shall at first derive an exact equation for amplitude for transition from an initial
state ui to a final state uf .

We shall start with the expression

H = H0 + λH ′ (12)

where λ to be set equal to 1 in final answer. The Schrodinger equation is

i~
∂ψ

∂t
= Hψ (13)

We assume that at time t = t0 the wave function of the system is given to be φ0(~r)
and we want to compute (approx) wave function at time t.

It is assumed that the eigenfunction and corresponding eigenvalues of H0 are
known exactly and will be denoted as un and En:

H0u0 = Enun. (14)

To solve Eq.(13) we expand ψ(x, t) as a sum in terms of the stationary states of H0

ψ(x, t) =
∑

Cn(t)e−i
En(t−t0)

~ un(x), (15)

where Cn, in general, depends on time, because the total Hamiltonian H is different
from H0. At time t = t0 the wave function is given to be φ0(~r). Therefore, setting
t = t0, in Eq.(15) we get

φ0(~r) =
∑

n

Cn(t0)un(~r). (16)

Therefore assuming un(~r) to be normalized, Cn(t0) are computed using

Cn(t0) = (un, φ0). (17)

Substituting Eq.(15) in Eq.(13) we shall derive an equation for Cn(t) which will
solved by perturbation theory. Therefore Eq.(15) used in Eq.(13) gives

∑

n

i~
dCn(t)

dt
e
−iEn(t−t0)

~ un(x) +
∑

n

Cn(t)Ene

“

−iEn(t−t0)
~

”

un(x) (18)

= (H0 +H ′)
∑

n

Cn(t)e−iEn(t−t0)/~un(x) (19)

=
∑

n

Cn(t)Ene
−iEn(t−t0)/~un(x) +

∑

n

Cn(t)e−iEn(t−t0)/~H ′un(x) (20)

Therefore,

∑

n

i~
(dCn(t)

dt

)

e−iEn(t−t0)/~un(x) =
∑

n

Cn(t)e−iEn(t−t0)/~H ′un(x) (21)

Take the scalar product with um(x) and use the orthogonality property of u’s to get,

i~
(dCm

dt

)

e−iEm(t−t0)/~ =
∑

n

e−iEn(t−t0)/~ (um, H
′un) (22)

3



DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  

or

i~
dCm

dt
=
∑

n

ei(Em−En)(t−t0)/~(um, H
′un) (23)

define ωmn = (Em−En)
~

and write Eq.(23) in the form

i~
(dCm

dt

)

=
∑

n

eiωmn(t−t0)(um, H
′un)Cn (24)

This is an exact equation. The value of Cn(t) at t = t0 is given by Eq.(17).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Status : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ◭ QM-24-03-
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§ 4 Perturbation Theory
QM-

24-

03-
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⊲
We recall some of the equations from the previous section.

H = H0 +H ′ (25)

H0un = Enun (26)

ψ(x, t)
∣

∣

∣

t=t0
= φ0(x) (27)

ψ(x, t) =
∑

n

Cn(t) exp(−iEn(t− t0)/~)un(x) (28)

where the coefficients Cn are functions of time and satisfy an exact equation given
by

i~
d

dt
Cn(t) =

∑

n

exp(iωmn(t− t0))〈m|H
′|n〉Cn(t) (29)

and the initial condition Eq.(27) on ψ(x, t) implies

Cn(0) = (un, φ0). (30)

It should be noted that the time dependence of the coefficients Cn is controlled
by the interaction term H ′ only. In absence any perturbation, i.e., , H ′ = 0 the
coefficients Cn become constants independent of time. This is because Cn are the
expansion coefficients in the expansion of the wave function in terms of the solu-
tions exp(−iEn(t− t0)/~)un(x) of the time dependent equation for the unperturbed
Hamiltonian H0. To obtain the perturbative solution of Eq.(29) we replace H ′ with
λH ′ and expand Cn in powers of λ. These steps are similar to the steps leading to
the Born approximation.

Cm(t) = C(0)
m (t) + λC(1)

m (t) + λ2C(2)
m (t) + · · · (31)

Substituting (31) in Eq.(29) and comparing the coefficients of different powers of λ

4



DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  

we successively get

i~
dC

(0)
m

dt
= 0 (32)

i~
dC

(1)
m

dt
=

∑

n

exp(iωmn(t− t0))〈m|H
′|n〉C(0)

n (t) (33)

i~
dC

(2)
m

dt
=

∑

n

exp(iωmn(t− t0))〈m|H
′|n〉C(1)

n (t) (34)

In many problems one is interested in computing the transition probability from an
initial state ui to a final state uf under the action of the perturbation term H ′. For
such a problem we have

φ0(~r) = ui(~r), (35)

Cm(0) = (um, φi) = (um, ui) = δim, (36)

Cm(0) =

{

1 m = i

0 m 6= i.
(37)

These equations can be solved successively to obtain the coefficients Cm to a desired
order of perturbation theory. The first order result is easily found to be

Cf(t) =
1

i~

∫ t

t0

〈f |H ′|i〉 exp(iωfi(t
′ − t0))dt

′ (38)

The above result is the basic result from which can be applied to actual problem of
interest. Further progress can be made if time variation ofH ′ is known. A simple and
commonly encountered situation is the case of periodic perturbation with a single
frequency. Assuming that H ′ varies periodically with time with a single frequency
ω we write

H ′ = Feiωt + F ∗e−iωt (39)

where F is an operator which does not depend on t explicitly. Let us substitute
Eq.(39) in Eq.(38) and integrate to get

C
(1)
f (t) = 〈f |F |i〉

[

ei(ωfi−ω)t − 1

−~(ωfi − ω)

]

+ 〈f |F †|i〉

[

e−i(ωfi+ω)t − 1

−~(ωfi + ω)

]

(40)

The above results have been derived assuming that the final state corresponds
to a discrete energy level. If the final state f corresponds to asome discrete energy
level a state in continuum quantity of interest is the transition rate, or the transition
probability per unit time. Further discussion and a derivation of the result for the
transition probability per unit time, the Fermi Golden rule, will be presented in § ←
5. Note that when ωfi = ±ω the coefficient Cf diverges signalling breakdown of the
perturbation theory due a resonance. This case will be dicsussed in detail in § 6 ←

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Status : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ◭ QM-24-03-

L2;

5



DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  

§ 5 Fermi Golden Rule
QM-

24-

03-

L3

⊲
In this section we assume that the perturbation is either independent of time, or
varies periodically with a single frequency and that the energy of the final states lies
in continuum. In this case the quantity of interest is the transition probability per
unit time and we will derive the Fermi Golden rule for this transition probability
per unit time.

We shall start from Eq.(40) with ω = 0 and a similar treatment can be for the

case ω 6= 0.
When the perturbation term is independent of time the probability amplitude,

upto first order,(setting t0 = 0) is given by

C
(1)
f (t) = 〈f |H ′|i〉

(

exp(iωfit)− 1

−~ωfi

)

(41)

and the hence one has

|C
(1)
f (t)|2 =

4 sin2(ωfit/2)

~2ω2
fi

|〈f |H ′|i〉|2. (42)

We plot |C
(1)
f (t)|2 in the figure below. Note that |C

(1)
f (t)|2 is large for ωfi ≈ 0 ,i.e.,

, for Ei ≈ Ef . Only a small range of energy ∆E values

∆E ≈ 2π(~/t) (43)

have an appreciable transition probability. As t → ∞,∆E → 0 and one recovers
conservation of energy. The Eq.(43) suggests that if a measurement is made after
time ∆t, the accuracy in E will be of the order of ∆E ≈ h/∆t which a form of
statement of time energy uncertainty relation.

Fig. 1.

QM-24-F02;Golden-Rule

Note that the area under the peak increases as t. Thus if we compute the transition
probability at time t, given by

∫ E+∆E

E−∆E

|C
(1)
f (t)|2|dE, (44)

to a set of states in the energy range E and E±∆E, the answer will be proportional
to time. In the case of transitions to a state in continuum, the quantity of interest

6
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is the rate of transitions to a group of final states having the energy in the range
E ±∆E, and hence one needs to compute the transition probability per unit time.
So we compute

d

dt
|C

(1)
f (t)|2 =

2

~
|〈f |H ′|i〉|2

(sinωfit

ωfi

)

(45)

and for large t this expression tend to

2π

~2
|〈f |H ′|i〉|2δ(ωfi) =

2π

~
|〈f |H ′|i〉|2δ(Ef − Ei) (46)

where use has been made of the standard results

lim
x→∞

sin kx

x
= πδ(x) (47)

δ(ax) =
1

|a|
δ(x) (48)

for the Dirac δ function. Hence the required transition probability per unit time to
the group of final states, obtained by differentiating Eq.(44) w.r.t. t and denoted
by wfi, is given by

wfi =
2π

~

∑

final states

|〈f |H ′|i〉|2 δ(Ef −Ei) (49)

Writing
∑

final states

(·) =

∫

dEfρ(Ef)(·) (50)

where ρ(Ef ) is the density of final states. Using Eq.(50) in Eq.(49) give

wfi =
2π

~
|〈f |H ′|i〉|2 ρ(E) (51)

where we have set Ef = Ei = E. This result, derived by Dirac, was named Golden
Rule by Fermi.

When the perturbation varies harmonically with time, we must analyse Eq.(40)

and the result is

wfi =
2π

~
|〈f |H ′|i〉|2 ρ(Ef ) (52)

The analysis proceeds by keeping only one of the two terms in Eq.(40) and showing

that the other term is not important. The final energy Ef can have only one of the
two values Ei + ~ω or Ei − ~ω only.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Status : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ◭ QM-24-03-
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Application to scatteringQM-
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⊲
The Fermi Golden rule can be applied to scattering and gives the first Born ap-
proximation result for the scattering amplitude. Let the incident beam be described
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by plane waves of momentum ~~ki. We wish compute the differential cross section
σ(θ, φ).

We therefore seek the rate of transtion into solid angle dΩ in the direction of ~kf .
The Fermi Golden rule gives the transition probabilty per unit time w to be

wi→f =
2π

~
ρ(kf)|〈 ~kf |H

′|~ki〉|
2, (53)

where the potential energy is taken to be the perturbation HamiltonianH ′ = V (~(r)).

We now need to compute the density of states ρ(~k) for the final states. For the initial
and final states, we will work with the plane wave solutions with periodic boundary
conditions given by

ui(~r) =
1

L3/2
exp(i~ki · ~r), uf(~r) =

1

L3/2
exp(i~kf · ~r). (54)

The allowed values of ~k in a box are kx = 2πnx/L, ky = 2πny/L, kz = 2πnz/L etc.
where nx, ny, nz are positive integers. There will be (L/2π)3dkxdkydkz states for the

propagation vector in the range ~k and ~k + d~k. The range dk is related to the range
dE of energy given by

E =
~

2k2

2µ
⇒

dE

dk
=

~
2k

µ
. (55)

and the number of states is

ρ(E)dE =
L3

(2π)3
dkxdkydkz (56)

where ρ(E) is the density of states. For differential cross section we need to compute
the transtion probability to states with final propagation vector in a small range of
angles θ, φ. The number of states with the direction ~k in the solid angle dΩ =
sin θ dθ dφ and magnitude in a small range dk is given by k2dΩ. Using Eq.(55), we
get

ρ(E)dE =
L3

(2π)3
k2 dk dΩ⇒ ρ(k) =

L3

8π3

µ k

~2
dΩ. (57)

Using the density of states (56), wave functions (54), the Golden rule gives the
transition probability w

w =
2π

~
ρ(E)|〈 ~kf |H

′|~ki〉|
2 (58)

=
µL3k

(4π2~3)
|〈 ~kf |H

′|~ki〉|
2 dΩ. (59)

Let us now recall the definition of differential cross section. Let a scattering
experiment be performed with a total of N particles. The number of particles
scattered into solid angle dΩ per unit time is proportional to the solid angle and
to the incident flux. The constant of proportionality is just the differential cross
section. The number of particles scattered into the solid angle is just the transition
probability w times N . The incident flux is N times the probability current for the

8
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initial state and equals N~k
µ

. . Therefore, using (59 for w, and (54) for the wave
functions

N × w = σ(θ, φ)× dΩ× N × Flux (60)

N ×
µkL3

(4π2~3)
dΩ = |〈 ~kf |H

′|~ki〉|
2 dΩ = σ(θ, φ)× dΩ×

~k

µ
(61)

∴ σ(θ, φ) =
µ2l3

4π2~4
|〈 ~kf |H

′|~ki〉|
2. (62)

Hence the differential cross section is given by the Born approximation result

σ(θ, φ) =
( µ

2π~2

)2
∣

∣

∣

∣

∫

ei~q·~rV (~r) d3r

∣

∣

∣

∣

2

, (63)

and ~q = (~ki − ~kf ) is the momentum transfer.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Status : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ◭ QM-24-03-
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§ 6 Probability for Resonance Transitions
QM-

24-

03-

L4

⊲
The case of periodic perturbation with a single frequency is an important one for
many physical situations including the interaction of radiation with matter. Assum-
ing that H ′ varies periodically with time with a single frequency ω we write

H ′ = Feiωt + F ∗e−iωt (64)

where F is an operator which does not depend on t explicitly. Let us substitute

Eq.(64) in Eq.(38) and integrate to get

C
(1)
f (t) = 〈f |F |i〉

[

ei(ωfi−ω)t − 1

−~(ωfi − ω)

]

+ 〈f |F †|i〉

[

e−i(ωfi+ω)t − 1

−~(ωfi + ω)

]

. (65)

In this section we discuss the case of resonance transition from an initial discrete
level i to a final discrete level f when the applied perturbation varies harmonically in
time. Here the term level refers to an energy level ofH0. The first order perturbation

result for a transitions between two discrete levels is given by Eq..(65) . When the

frequency ~ω is close to one of the two differences Ei − Ef , or Ef − Ei, the above
result blows up and the perturbation theory breaks down. In this case we must
get back to the exact equations and analyze them again making a different kind of
approximation. We will do so and solve the resulting approximate equations exactly.

We start with Eq..(24) after substituting

H ′ = Feiωt + F1e
−iωt (66)

we get

i~
dCm(t)

dt
=

∑

n

exp
(

i(ωmn + ω)t
)

〈m|F |n〉Cn(t)

+
∑

n

exp
(

i(ωmn − ω)t
)

〈m|F †|n〉Cn(t). (67)

9
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In the perturbation approximation after integration, the large coefficients came from
those terms which were multiplied with an exponential with a small argument. For
a given ω when there are two energy levels i and f such that |Ef − E − i| matches
with ~ω, we need to retain all the terms involving the two coefficients Ci and Cf in

the summation in the right hand side of Eq..(67) . Thus the resulting approximate

equations to be solved assume the form

i~
dCf(t)

dt
= exp

(

i(ωfi + ω)t
)

〈f |F |i〉Ci(t)

+ exp
(

i(ωfi − ω)t
)

〈f |F †|i〉Ci(t). (68)

and

i~
dCi(t)

dt
=

∑

n

exp
(

i(ωif + ω)t
)

〈i|F |f〉Cf(t)

+ exp
(

i(ωif − ω)t
)

〈i|F †|f〉Cf(t). (69)

. In these equations we retain only those exponentials which have small arguments.
Taking ~ω ≈ (Ef − Ei), using the notation ν ≡ ωfi − ω, and therefore writing
ωif + ω = −ν, we get

i~
dCf(t)

dt
= 〈f |F †|i〉eiνtCi(t) (70)

i~
dCi(t)

dt
= 〈i|F |f〉e−iνtCf(t) (71)

Next we solve these equations exactly with the initial conditions Ci(0) = 1, Cf(0) =
0. The probability of transition from the initial level Ei to the final level Ef at time
t is then given by

Pi→f(t) =
2|〈f |F |i〉|2

~2Ω2
| {1− cos Ωt} , (72)

where

Ω2 =
~

2ν2 + 4|〈f |F |i〉|2

~2
. (73)

It is to noted that the transition probability is periodic in time with the period 2π/Ω
and it varies from 0 to a maximum value

2|〈f |F |i〉|2

~2ν2 + 4|〈f |F |i〉|2
(74)

For the exact resonance ν =
Ef−Ei−~ω

~
= 0 and we get the transition probability to

be

Pi→f(t) =
1

2

(

1− cos 2|〈f |F |i〉|t/~
)

, (75)

and the system makes periodic transitions between the levels i and f with the period
π~/|〈f |F |i〉|.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Status : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ◭ QM-24-03-
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Details of SolutionQM-

24-

03-

L5

⊲
For the resonance transitions the equations satisfied by the coefficients Ci and Cf ,

Eq..(70) and Eq..(71) , are

i~
dCf(t)

dt
= 〈f |F †|i〉eiνtCi(t) (76)

i~
dCi(t)

dt
= 〈i|F |f〉e−iνtCf(t) (77)

In this section we solve these equations exactly and obtain expressions for Ci(t) and
Cf(t). To solve we define

bf = Cf exp(−iǫt) (78)

so that

d

dt
Cf(t) =

d

dt

(

bfe
iǫt
)

(79)

=
( d

dt
bf + iǫbf

)

eiǫt (80)

Eliminating Cf Eq..(76) and Eq..(77) , using Eq..(78) and Eq..(79) , we get

Ċi =
1

i~
〈i|F |f〉bf (81)

and

ḃf + iǫbf =
1

i~
〈f |F †|i〉Ci

=
1

i~
〈f |F |i〉∗Ci (82)

Eliminating Ci from Eq..(80) and Eq..(82) we get

b̈f + iǫḃf =
1

i~
〈f |F †|i〉Ċi

= −
|Ffi|

2

~2
bf (83)

Therefore, we have

b̈f + iǫḃf +
|Fif |

2

~2
ḃf = 0 (84)

This is a linear differential equation with constant coefficient and can be solved

exactly. The solutions of Eq..(84) have the form

bf (t) = exp(iαt) (85)

where α satisfies the equation

α2 + ǫα −
|Fif |

2

~2
(86)

11
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The two roots of this equation are α± where

α± = −
ǫ

2
±∆ (87)

where ∆ is given by

∆2 =
ǫ2

4
+
|Fif |

2

~2
(88)

Substituting back in Eq..(85) the general solution for bf becomes

bf (t) = A exp(iα+t) +B exp(iα−t) (89)

and hence
Cf(t) =

[

A exp(iα+t) +B exp(iα−t)
]

exp(iǫt) (90)

We then get, from Eq..(77) ,

Ci(t) =

(

i~

F ∗
if

)

[

iAα+ exp(iα+t) + iα−B exp(iα−t)

+iǫA exp(iα+t) + iǫB exp(iα−t)
]

(91)

At time t = 0, the initial conditions are Ci(0) = 1 and Cf(0) = 0 giving

iAα+ + iBα− + iǫ(A +B) = F ∗
if/~ (92)

A+B = 0 (93)

Using Eq..(91) and Eq..(92) we get

A(ǫ/2 + ∆) +B(ǫ/2−∆) = −
F ∗

if

~
(94)

or

2A∆ = −
Fif

~
(95)

A = −
Fif

2∆~
(96)

B =
F ∗

if

2~∆
(97)

Rearranging Eq..(91) and using B = −A we get

Ci(t) =

(

i~

F ∗
if

)

[

iA(ǫ+ α+) exp(iα+t) + iB(ǫ+ α−) exp(iα−t)
]

(98)

=

(

i~

F ∗
if

)

(iA)
[

(ǫ+ α+) exp(iα+t)− (ǫ+ α−) exp(iα−t)
]

(99)

12



DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  

Substituting for α± from Eq..(87) we get

Ci(t) =

(

i~

F ∗
if

)

(

−iF ∗
if

2∆~

)

× exp(−iǫt/2)

×
[

(ǫ/2 + ∆)eiα+t − (ǫ/2 + ∆)eiα
−

t
]

(100)

=
1

2∆
exp(−iǫt/2)

[

2∆ cos(∆t) + iǫ sin(∆t)
]

(101)

and Ci(t) is given by

Ci(t) = e−i ǫt
2

(

cos ∆t+ i
ǫ

2∆
sin ∆t

)

(102)

Also Eq..(90) with B = −A gives

Cf(t) = A exp(iǫt)
[

exp(iα+t)− exp(iα−t)
]

(103)

= 2iA exp(iǫt/2) sin ∆t (104)

= −
( iF ∗

if

∆~

)

sin ∆t (105)

Hence the probability o finding the system in the state f at time t is

|Cf(t)|
2 =

|Fif |
2

∆2~2
sin2 ∆t (106)

=
|Fif |

2

∆2~2
sin2

(ǫ2

4
+
|Fif |

2

~2

)1/2

t (107)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Status : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ◭ QM-24-03-

L5;

§ 7 Examples and Applications

Several important applications will now be taken up briefly where the results of time
dependent perturbation are used.

I-Transition to a discrete levelQM-

24-

02-

L2

⊲
We assume that under the action of perturbation the transition takes place to an-

other state of system which corresponds to a discrete level. In this case Eq.(38) is

the basic formula, and |Cfi(t)|
2 gives the probability of a transition at time t from

the initial state i to the final state f . We list a few cases of interest.

Interaction switched on adiabatically

We assume that the interaction is switched on at some time and later switched
off adiabatically. As an example consider a charged harmonic oscillator moving
in a potential 1

2
mω2x2.

H0 =
P 2

2m
+
mω2

2
x2 (108)

13



DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  

Suppose an electric field varying with with time is switched on. This would
introduce an extra term in Hamiltonian given by

H′ = −qE(t)x (109)

corresponding to the situation when the electric field is independent of x but
may change with time. For example, one may have

E = E0(1− e
−t
t0 ) t > 0 (110)

with the field being switched on at t = 0 and increasing to E0. The energy
levels (n + 1

2
)~ω of the harmonic oscillator are no longer stationarty states

under the action of this electric field. If the system is in the state Ei at time
t = 0, it has a non zero probability of being in some other state Ef at a later
time. The method of time dependent perturbation allows us to compute this
probability when the field is weak.

Harmonic Perturbation

Our next case of interest is when the perturbation varies with time with a single

frequency. In this case the result Eq.(25) provides the perturbation theory

answer for the transition amplitude. This case has application to interaction of
electromagnetic radiation with matter. The single frequency case corresponds
to a monochromatic radiation.

Resonance Case

An important application of the time dependent perturbation theory is when
the perturbation Hamiltonian H′ varies with time as

H ′ = 2H ′
0 sin(ωt) (111)

when the frequency ω matches with a difference
Ef−Ei

~
for some final level the

probability of transition to Ef becomes very large and is small for all other

energy levels. In this case the basic perturbation theory result, Eq.(38) ,

breaksdown. In this case the problem is simplified by working in two level ap-
proximation i.e. by neglecting effect of all other energy levels and the inifinite
set of coupled equations reduce to two coupled linear equations which can be
solved exactly.

H ′(t) has a continuous range of frequencies

In this class of examples the perturbation is a superpostion of a continuous
range of frequencies. For a pair of specified initial and final states, several
frequencies close to the resonance freqeuncy, (Ef − Ei)/~, will contribute ap-
preciably and all such contributions must be added up. In this case the result
is very similar to that given under Fermi Golden rule. An example of this case
is interaction of atoms with white light.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Status : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ◭ QM-24-02-

L2;
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II-Transitions to a set of final states in continuumQM-

24-

02-

L3

⊲
The cases of interest are further grouped according to the time dependence of the
perturbation Hamiltonian H ′(t)

Interaction H ′(t) switched on adiabatically

In the previous case we have considered an example in which a charged har-
monic oscillator is subjected to perturbation 1

2
mω2x2

H ′ = V0 exp(−t/t0) (112)

Suppose we place a hydrogen atom between the plates of charged capacitor
which is subsequently discharged through a resistance. We may then again ask
a question: what is the probability that if at time t = 0 H-atom is in an initial
state n, after some time t, it will be found in some final, excited, state m. The
question is similar to the above example of charged harmonic oscillator and
falls under the class of problems mentioned in I.

However, the H- atom offers one more possibility. Under the action of external
perturbation, the atom may get ionized and the final energy then does not
correspond to a discrete energy level. The transition in this case takes place
to a level in the continuum.

Perturbation H ′(t) is independent of time

This is, for example, the case for scattering; we are interested in knowing the
probability per unit time that a particle gets scattered into solid and dΩ. The
differential scattering cross section, σ(θ, φ) is related to such a probability.

σ(θ, φ) =
prob per unit time of particle getting scattered in solid angle dΩ

prob per unit time of a particle in incident beam crossing a unit area
(113)

In case of scattering

H = H0 + V (r) H0 =
P 2

2m
(114)

and V (r) is to be treated as perturbation (H′ ≡ V (r)). Here the initial state
corresponds to plane waves with momentum ~pi and final states corresponds to
momentum ~pf . The initial and final states are eigenstates of the unperturbed
Hamiltonian H0.

In the presence of the potential, the momentum is not conserved and hence
the possibility of momentum changing to some final value ~pf after some time.
Note that here (H′ = V (r)) is not dependent on time, but we are still using
time dependent method because the question concerns, time evolution of eigen
states of H0 under the action of full Hamiltonian H .

H ′(t) varies harmonically with time

An example of interest here is ionization of an atom in presence of an external
periodic electric field which varies with a single frequency.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Status : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ◭ QM-24-02-

L3;
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III-Periodic perturbation– resonant transitionQM-

24-

02-

L4

⊲
An important application of the time dependent perturbation theory is when the
perturbation Hamiltonian H′ varies with time as

H ′ = 2H ′
0 sin(ωt) (115)

when the frequency ω matches with a difference
Ef−Ei

~
for some final level the prob-

ability of transition to Ef becomes very large and is small for all other energy levels.
In this case problem can be simplified by working in two level approximation i.e. by
neglecting effect of all other energy levels.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Status : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ◭ QM-24-02-

L4;

16



DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  

§ 8 Tutorial

[1] An arbitrary quantum mechanical system is initially in the state |0 >. At time
t = 0 a perturbation of the form H ′ = H0 exp(−t/T ) is swithced on. Show
that at large times the probability of the system being in the state |1 > is
given by

|〈0|H0|1〉|
2

(~/T )2 + (∆E)2

where ∆E is the energy difference betwen the states |0〉 and |1〉.

[2] A particle of charge e is confined to a cubical box of side 2b. An electric field
~E given below is applied to the system.

~E =

{

(0 t < 0
~E0 exp(−αt) t > 0)

where α > 0, The vector E0 is perpendicular to one of the surfaces of the box.
To the lowest order in E0 calculate the probability that the charged particle,
in the ground state at time t = 0, is excited to the first state at time t =∞.

[3] A particle of charge q moving in one dimension is initially bound to a delta
function potential at the origin. From time t = 0 to t = τ it is exposed to a
constant electric field E in the x direction.

(a) Assume that the continuous energy wave functions may be approximated
by the free particle wave functions, find the density of states as ρ(E) as
function of energy E

(b) Assuming that the electric field may be treated as a perturbation find the
probability that the particle will be found in a continuous energy state
with energy in the range E and E + dE if at time t = 0 it was known to
be in the bound state.Sss

You may assume that the normalized bound state wave function for the delta
function potential V (x) = −γδ(x) is given by,

u(x) =

√

mγ

~2
exp(−mγ

~2 |x|)
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