Two Qubit Gates

A. K. Kapoor

December 6, 2021

Contents

1 Two Qubit Gates

Gates acting on two qubits $|x\rangle|y\rangle$ are known as two qubits. Two qubit $|x\rangle|y\rangle$, more generally $|\psi_1\rangle|\psi_2\rangle$ are elements of $\mathcal{H} \otimes \mathcal{H} \equiv \mathcal{H}^{(2)}$

CNOT, or controlled NOT, gate is a two qubit gate. It action on $|x\rangle|y\rangle$ leaves the first qubit $|x\rangle$, called control qubit, unchanged and flips the second qubit $|y\rangle$ if the control bit is $|1\rangle$

$$
\text{CNOT} \ |0\rangle|0\rangle = |0\rangle|0\rangle \quad \text{CNOT} \ |0\rangle|1\rangle = |0\rangle|1\rangle
$$
\n
$$
\text{CNOT} \ |1\rangle|0\rangle = |1\rangle|1\rangle \quad \text{CNOT} \ |1\rangle|1\rangle = |1\rangle|0\rangle
$$

Here $x, y \rightarrow \{0 \text{ or } 1\}.$

More generally, using the notation $|x\rangle|y\rangle \equiv |xy\rangle$, we have

$$
\alpha|00\rangle + \beta|01\rangle + \gamma|10\rangle + \delta|11\rangle
$$

$$
\xrightarrow{CNOT} \alpha|00\rangle + \beta|01\rangle + \gamma|11\rangle + \delta|10\rangle
$$

1 Matrix representation

$$
CNOT = \begin{bmatrix} I_2 & 0 \\ 0 & \sigma_x \end{bmatrix}
$$

Digramatically $|x\rangle \longrightarrow \longrightarrow |x\rangle$ $|y\rangle$ —— \downarrow —— $|x + y\rangle$ where $x, y = 0, 1$

CNOT gate

2 Exercise/Example

1. The figure shows a Hadamard gate on the first qubit followed by a CNOT gate on $|00\rangle$. It will give

$$
|00\rangle \overset{H}{\rightarrow} \frac{|0\rangle + |1\rangle}{\sqrt{2}} \oplus |0\rangle \frac{CNOT}{\sqrt{2}} \frac{|00\rangle + |11\rangle}{\sqrt{2}}
$$

Exercise find action of the above network on $|01\rangle, |10\rangle, |11\rangle.$

2. Frequently one needs NOT operation on a single qubit

$$
|0\rangle \stackrel{NOT}{\rightarrowtail} |1\rangle, \qquad |1\rangle \stackrel{NOT}{\rightarrowtail} |0\rangle \tag{1}
$$

This operation can be achieved by adding a control bit $|1\rangle$ and using CNOT gate as follows.

$$
|1\rangle|0\rangle\stackrel{NOT}{\rightarrow}|1\rangle|1\rangle,\qquad|1\rangle|1\rangle\stackrel{NOT}{\rightarrow}|1\rangle|0\rangle
$$
 (2)

More 2 qubit gates

The action of Hadamard gate followed by a CNOT gate on two qubits is as follows.

$$
|00\rangle = |0\rangle|0\rangle \stackrel{H}{\rightarrow} \frac{|0\rangle + |1\rangle}{\sqrt{2}} |0\rangle \stackrel{CNOT}{\rightarrow} \frac{|00\rangle + |11\rangle}{\sqrt{2}}
$$

$$
|10\rangle = |1\rangle|0\rangle \stackrel{H}{\rightarrow} \frac{|0\rangle - |1\rangle}{\sqrt{2}} |0\rangle \stackrel{CNOT}{\rightarrow} \frac{|00\rangle - |11\rangle}{\sqrt{2}}
$$

$$
|x_1x_2\rangle = |x_1\rangle|x_2\rangle \longrightarrow ? ? \text{ where } x_1, x_2 \in \{0, 1\}
$$

2 qubit controlled phase gate

$$
|x\rangle \longrightarrow \bullet \longrightarrow |0\rangle |y\rangle \quad \text{does nothing to } |y\rangle
$$

 $|1\rangle$ \longrightarrow \bullet \longrightarrow $|1\rangle$ $(U|y\rangle)$ applies unitary operator u only $|y\rangle$

In a controlled gate the control $bit(s)$ do not change

$$
|x\rangle |1\rangle\stackrel{CNOT}{\rightarrowtail}|x\rangle |x\oplus 1\rangle
$$

so $|x\rangle|0\rangle \rightarrow |x\rangle|x\rangle.$

CNOT gate has representation

$$
CNOT = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}
$$

in computational basis $\{|00\rangle, |01\rangle, |10\rangle, |11\rangle\}$

CV gate is the gate given by the matrix

$$
V = \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix}
$$

 CV gate is a controlled phase gate where the phase matrix is V . Note that V is unitary and $V^4 = I$.

Example: A CNOT gate can be built from H and CV gates

Check for missing figures