Single Qubit Quantum Gates

A. K. Kapoor

December 6, 2021

Contents

1	Single	Qubit Quantum Gates	1
	1	Hadamard gate	1
	2	Rotation about X, Y, Z axes	2

1 Single Qubit Quantum Gates

1 Hadamard gate

The Hadamard gate can be represented by a matrix

$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1\\ 1 & -1 \end{pmatrix}$$

in computational bases the states $|0\rangle$ and $|1\rangle$ transform as

$$H|0\rangle = \frac{|0\rangle + |1\rangle}{\sqrt{2}}$$
 $H|1\rangle = \frac{|0\rangle - |1\rangle}{\sqrt{2}}$

Example For $|\pm\rangle = \frac{|0\rangle \pm |1\rangle}{\sqrt{2}}$

$$H|+\rangle = |0\rangle , \quad H|-\rangle = |1\rangle$$

The action of Hadamard gate is unitary operation.

The action of Hadamard gate is diagrammatically represented as

$$|0\rangle - \underline{H} - \frac{|0\rangle + |1\rangle}{\sqrt{2}}$$
$$|1\rangle - \underline{H} - \frac{|0\rangle - |1\rangle}{\sqrt{2}}$$
or
$$|x\rangle - \underline{H} - \frac{1}{\sqrt{2}} \{(-1)^x |x\rangle + |1-x\rangle\}$$

where $|x\rangle$ can be $|0\rangle$ or $|1\rangle$.

Ref. Ekert, A. "Basic Concepts in Quantum Computation", arxiv-quantpn/0011013v1, Nov. 2000.

Rotation about X, Y, Z axes $\mathbf{2}$

$$X, Y, Z \longrightarrow \text{ Pauli Matrices}$$

$$X = \sigma_x \qquad Y = \sigma_y \qquad Z = \sigma_z$$

$$= \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

Operation of rotation about X, Y, Z axes can be built in terms of Pauli matrices

 $=\sigma_{z}$

$$R_x(\theta) = \exp\left(-i\alpha \frac{X}{2}\right) = \begin{pmatrix} \cos(\alpha/2) & -i\sin(\alpha/2) \\ -i\sin(\alpha/2) & \cos(\alpha/2) \end{pmatrix}$$

performs a rotation about X axis.

$$R_y(\theta) = \exp\left(-i\theta\frac{Y}{2}\right)$$
 and $R_z(\theta) = \exp\left(-i\theta\frac{Z}{2}\right)$

rotate the state of a qubit about Y and Z axes. The matrix $U(\phi) =$ $\begin{pmatrix} 1 & 0 \\ 0 & e^{i\phi} \end{pmatrix}$ changes phase of $|1\rangle$ and leaves $|0\rangle$ unchanged

$$U(\phi)|0\rangle = |0\rangle$$
 $U(\phi)|1\rangle = e^{i\phi}|1\rangle$.

An arbitrary rotation about $\hat{n} = (n_1, n_2, n_3)$ by angle α can be written in terms of R_x, R_y and R_z

Question 1 Write an arbitrary rotation

 $U(\hat{n},\alpha) = \exp\left[-i\alpha\left(n_1X + n_2Y + n_3Z\right)\right]$

in terms of rotations R_x, R_y, R_z about the coordinate axes.

The phase gate ϕ changes the phase of a qubit.

The usefulness of R_x, R_y, R_z and ph lies in the fact that an arbitrary unitary operator V with determinant $\det V = 1$ has a representation in terms of rotations about the coordinate axes

$$V \equiv R_x(\alpha) R_y(\beta) R_z(\gamma).$$

An arbitrary unitary matrix can be written as a product of rotations about the coordinate axes and a phase transformation

$$U = R_z(\alpha) R_y(\beta) R_z(\gamma) ph(\delta).$$

Transformation from $|0\rangle$ to an arbitrary state

A general state, θ,ϕ on Bloch sphere can be obtained from $|0\rangle$ by a sequence of operations

$$\begin{split} |0\rangle & --\underline{\mathbf{H}} & \frac{|0\rangle + |1\rangle}{\sqrt{2}} \\ & \frac{|0\rangle + |1\rangle}{\sqrt{2}} & -\underline{2\theta} & \frac{|0\rangle + e^{2i\theta}|1\rangle}{\sqrt{2}} \\ & \frac{e^{-i\theta}|0\rangle + e^{i\theta}|1\rangle}{\sqrt{2}} & -\underline{\mathbf{H}} & -\frac{1}{\sqrt{2}}e^{-i\theta}\left\{|0\rangle + |1\rangle\right\} + \frac{1}{\sqrt{2}}e^{i\theta}\left\{|0\rangle - |1\rangle\right\} \\ & = \cos\theta|0\rangle - i\sin\theta|1\rangle \\ & \cos\theta|0\rangle - i\sin\theta|1\rangle & -\underline{\pi/2 + \phi} & -\cos\theta|0\rangle + \sin\theta e^{i\phi}|1\rangle \end{split}$$

Thus a single qubit $|0\rangle$ can be transformed into a general state $|\theta,\phi\rangle$ by using Hadamard and phase gates

$$|0\rangle - H - H - \pi/2 + \phi \cos \theta |0\rangle + \sin \theta e^{i\theta} |0\rangle$$

In general an *n* qubit state $|\psi_1\rangle|\psi_2\rangle \cdot |\psi_n\rangle$, can be generated from $|0\rangle|0\rangle \cdots |0\rangle$ using Hadamard gates and phase gates.

Question 2 Verify the following identities:

$$ph(\theta)|0\rangle = e^{i\phi}|0\rangle \quad ph(\phi)|1\rangle = e^{i\phi}|1\rangle.$$