LATEX-Any Document

Positive Operators

A. K. Kapoor http://0space.org/users/kapoor akkapoor@cmi.ac.in; akkhcu@gmail.com

Contents

1	Positive Operators	1
2	Properties of positive operators	1
3	Proof of (3) :	2
4	Example:	2

1 Positive Operators

Definition 1 An operator P, in a complex inner product space, is called **positive operator** if

$$\langle f|A|f\rangle \ge 0\,. \tag{1}$$

holds for all vectors $|f\rangle$ in the vector space.

2 Properties of positive operators

(a) The eigenvalues of a positive operator are positive.

Proof If *P* is a positive operator and α is an eigenvalue with eigenvector $|\alpha\rangle$

$$P|\alpha\rangle = \alpha|\alpha\rangle \Rightarrow \frac{\langle \alpha|P|\alpha\rangle}{\langle \alpha|\alpha\rangle} = \alpha \tag{2}$$

Therefore $\alpha \geq 0$. Thus the eigenvalues of a positive operator are non negative.

(b) A positive operator in an inner product space is hermitian.

Proof We shall use the fact that $\langle f|X|f\rangle = 0$ for all vectors implies that the operator X = 0

$$\langle f|X|f\rangle = 0 \Rightarrow X = 0.$$
(3)

For a positive operator $\langle f|P^{\dagger}|f\rangle = \langle f|P|f\rangle^* = \langle f|P|f\rangle$. The last step follows from positivity property of operator P. Therefore

$$\langle f|(P - P^{\dagger})|f\rangle = \langle f|P^{\dagger}|f\rangle - \langle f|P|f\rangle = 0$$
(4)

holds for every vector in $|f\rangle$ in the vector space. This implies that $P - P^{\dagger} = 0$ or P is a hermitian operator.

3 Proof of (3):

For completeness we write out proof of (3). This result is a consequence of polarization like identity

$$4i\langle f|X|g\rangle = \langle (f+g)|X|(f+g)\rangle - \langle (f-g)|X|(f-g)\rangle +i\langle (f+ig)|X|(f+ig)\rangle - i\langle (f-ig)|X|(f-ig)\rangle$$
(5)

If $\langle f|X|f \rangle$ vanishes for all f, the r.h.s. of (5) is zero giving $\langle f|X|g \rangle = 0$ for all vectors $|f \rangle$ and $|g \rangle$. This in turn implies that the operator X itself is zero.

4 Example:

An operator A having positive eigenvalues need not be a positive operator. To see this, consider $A' = SAS^{-1}$ has positive eigenvalues, for every invertible operator S. If A is hermitian, A' need not be hermitian. Since positive operators are necessarily hermitian, we conclude that A need not be positive operator.

Question for you: In a finite dimensional complex vector space, give an example of an operator X and vector $|f\rangle$ such that the eigenvalues of X are positive but $\langle f|X|f\rangle$ is negative.