Notes for Lectures in Quantum Computing and Quantum Information *

Binary Number Representation

A. K. Kapoor http://0space.org/users/kapoor

akkapoor@cmi.ac.in; akkhcu@gmail.com

Contents

1	Representation in binary numbers
2	Boolean algebras
3	Basic operations
4	Properties of binary operations

1 Representation in binary numbers

Binary representation uses a sequence of 0 and 1 to represent a given positive integer. We use the notation that roman alphabets will take values 0,1. Thus $x \in \{0,1\}$, similarly $a_1, a_2, \dots, b_1, \dots$ etc., will take values in $\{0,1\}$. These numbers will be called bits, or classical bits, or cubits.

A sequence of bits such as

$$a_n \cdot \cdot \cdot \cdot \cdot a_1 a_0 \equiv a$$

will be called multi bit and represents the number

$$N = a_n 2^n + a_{n-1} 2^{n-1} + \cdots + a_2 2 + a_0$$

For example, a 3 bit number 111 is

$$111 \mapsto 1 \times 2^2 + 1 \times 2^1 + 1 = 7$$

 $11001 \mapsto 1 \times 2^5 + 1 \times 2^3 + 1 = 32 + 8 + 1 = 41$

A sequence of n classical bits represents numbers in the range 0 to $2^n - 1$.

For example, using 6 bits, we can represent any integer in the range 0 to $2^6 - 1 = 63$. To represent a number p, at least $\log_2 p$ bits are needed.

For example, to represent 1000 as a binary number at least $\log_2 1000 = 9.97 \rightarrow 10$ bits are required.

^{*}qcqi-lec-01001; Updated:Dec 6, 2021; Ver 0.x

2 Boolean algebras

Several binary operations can be performed on two classical bits. These operations form elements of an algebra known as Boolean algebra

$$x+1=1 \qquad \qquad A \cdot \bar{A} = 0$$

$$x+0=x \qquad \qquad A+B=B+A$$

$$x \cdot 1 = x \qquad \qquad \overline{A+B} = \bar{A} \cdot \bar{B}$$

$$x \cdot 0 = 0 \qquad \qquad \overline{A \cdot B} = \bar{A} + \bar{B}$$

$$x+x=x \qquad \qquad x \cdot x = x$$

$$x+\bar{x} = 1 \qquad \qquad x \cdot y = x \wedge y$$

$$\text{NOT } x = \bar{x} \qquad \qquad x+y=x \vee y$$

$$\text{NOT (NOT } x)=x \qquad \text{NOT } \bar{x}=x$$

One should think of bits 1 and 0 as true and false respectively.

3 Basic operations

• AND: x AND y also written as $x \wedge y$ satisfies

$$x \wedge y = \begin{cases} 1 & \text{if } x = y = 1\\ 0 & \text{otherwise} \end{cases}$$

• OR: $x ext{ OR } y$, also written as $x \vee y$ satisfies

$$x \lor y = \begin{cases} 0 & \text{if } x = y = 0\\ 1 & \text{otherwise} \end{cases}$$

• **NOT:** NOT x, denoted by $\neg x$, is defined by

$$\neg x = \begin{cases} 0 & \text{if } x = 1\\ 1 & \text{if } x = 0 \end{cases}$$

Question 1 It is correct to say that we can represent the above binary operations on numbers 0 and 1, as arithmetic operations modulo 2. So the question is, "Is it consistent to use the following?" $x \wedge y = x \cdot y$ (multiplication mod 2); $x \vee y = x + y$, (addition modulo 2); and $\neg x = 1 - x$.

2

4 Properties of binary operations

Distributive property

$$x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z)$$
$$x \vee (y \cap z) = (x \vee y) \wedge (x \vee z)$$

Associative property

$$x \cup (y \cup z) = (x \cup y) \cup z$$
$$x \cap (y \cap z) = (x \cap y) \cap z$$

 $Double\ negation$

$$\neg(\neg x) = x$$

Commutative property

$$x\vee y=y\vee x$$

$$x \wedge y = y \wedge x$$

Question 2 What is being represented in terms of binary numbers? Integers? Rational numbers? Irrational numbers? Any real number?

Reference: Wikipedia