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The appropriateness of the standard equation of state of a rubber band is studied in an
undergraduate laboratory experiment. There are two parts to the experiment: In the first part, a
band is stretched at constant temperature; in the second, the band is kept at constant length while
heated. The two coefficients in the equation of state of the rubber band are determined in four
different ways: numerical differentiation of the data, numerical integration of the data, regression
analysis, and linear regression on a “straight-line” form of the equation of state. The advantages
and disadvantages of each technique are discussed. The characteristic constants describing the
rubber band appear to vary by up to 15% depending on the technique of analysis employed. The

origins of these variations are discussed.

I. INTRODUCTION

We have developed an undergraduate laboratory experi-
ment in which the thermodynamic properties of an ordi-
nary rubber band are measured. The experiment is simple
and easily performed by one student, taking approximately
2 hto collect the data. This experiment shows that a rubber
band follows a predicted equation of state over a restricted
region of applied force and temperature which is chosen a
posteriori to minimize possible deformation of the band and
hysteresis. This range depends on the particular rubber
band studied and hence the student must either perform
the experiment twice (once to find this region, and once to
obtain data) or the laboratory instructor must determine
this range and state it as an experimental constraint.

This experiment has three goals: (1) to give the student
the opportunity to measure the equation of state of a real
substance using simple techniques; (2) to teach some of the
techniques of data analysis, especially those related to
“straight-line” analysis; (3) to help the student learn to
work within the confines of simple apparatus and tech-
niques. There are several aspects of this experiment, such
as our measurement technique for the length of the rubber
band, and even our choice of using a rubber band rather
than a sheet of rubber, that could easily be changed. The
philosophy of this laboratory is similar to that discussed in
Baird’s text.! There are several places where we try to im-
plement ideas from his book. Most important, our focus is
not strictly on obtaining the “correct” value for the coeffi-
cients in the equation of state, but rather on showing sever-
al ways to determine them and demonstrating the relative
advantages and disadvantages of each technique.

An equation of state of a rubber band is?

F=AT(L/L, - L2/L?), (1

where 4 is a constant to be determined, L, is the length of
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the rubber band at zero applied force, F is the force on the
rubber band causing it to stretch to lengths greater than L,
T is the absolute temperature of the rubber band, and L is
the length of the band when a force F is applied.

1I. MEASUREMENT OF 4 AT CONSTANT
TEMPERATURE

In the first part of this experiment, we determined the
constant 4 at constant temperature by measuring the
length of a thin rubber band as a function of applied force.
The band used in the present experiment has an un-
stretched length L, =5.52 cm and thickness 1 mm. In
practice, L, is difficult to measure accurately. In the pres-
ent experiment we estimated L, = 5.50 cm by direct mea-
surement and found L, = 5.52 cm from the analysis given
below. Figure 1 shows the apparatus used for this part of
the experiment. The band was hung at the top from a thin,
stable support rod of radius 2.5 mm, and a hook of radius 2
mm (mass = 4.1 g) was hung at the bottom. This hook
allowed additional mass to be suspended from the band. L
is measured as shown in the figure.® Experimentation
showed that the best results are obtained when masses of
less than 150 g are hung on the rubber band. Larger masses
resulted in permanent deformation of the band and hyster-
esis.

Mass was added to the band in increments of 5 g. The
length of the band was measured using a vernier caliper.
The force on the rubber band was calculated as F = mg,
where g is the magnitude of the acceleration of gravity.
Room temperature was measured to be 21.2 °C (294.4 K).
A graph of typical data obtained in this part of the experi-
ment is shown in Fig. 2. The best straight line through the
data and the least-squares fit of the data to Eq. (1) de-
scribed below are also shown. Note that the data are not
well represented by a straight line.
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Fig. 1. Diagram of the apparatus used to determine Fvs L.

The constant 4 can be determined from these data in
several different ways. The most straightforward, although
certainly not the simplest, technique is to perform a least-
squares fit of the experimental data to Eq. (1). However,
the second term on the right side of Eq. (1) is proportional
to 1/L?; thus the normal fitting programs on calculators,
etc. cannot be used for this purpose. We have written* a
least-squares-fitting program that does fit the data directly
to Eq. (1) and obtain from this program 4 = 486 + 10
dyn/K, and L, = 5.52 4 0.04 cm.

A second technique for analyzing the data consists of
calculating the work done on the rubber band in stretching
it from the length L, to L,. From Eq. (1) it follows that

L, 2 _ g2
W=f FdL=AT[———L22 L‘+Lg(1 —L)]
L,

0 L, L,
(2)
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Fig. 2. Graph of typical data obtained using the apparatus shown in Fig. 1:
(~—-) least-squares fit to Eq. (1) and ( ) least-squares fit to a
straight line, i.e., Hooke’s law.

142 Am. J. Phys., Vol. 59, No. 2, February 1991

The only unknown parameter in this equation is A. Hence,
by numerically calculating the work (by determining the
area under the Fvs L curve) and comparing it to the right-
hand side of Eq. (2), one can obtain A. Using this tech-
nique and-all our data from L, = 5.62cmto L, = 8.31 cm,
with L, = 5.52 cm, we find 4 = 485 4 25 dyn/K.°> How-
ever, knowledge of L, is critical to this calculation. The use
of L, = 5.56 cm in this calculation yields 4 = 500 dyn/K;
similarly, using L, = 5.48 cm yields 4 = 470 dyn/K. Even
though the Fvs L curve is not linear, a better estimate of L,
than taking L, = L when m = 4.1 g (the mass of the hook)
can be obtained by using linear extrapolation back to F = 0
from the first two data points, for which the first term on
the right side of Eq. (1) dominates the second term. In the
present experiment this technique yields L, = 5.56 cm.

A third technique for analyzing the data consists of cal-
culating

AF| _Fi—F 9F

ALz L,—L, OL|,
where i and j refer to two neighboring data points shown in
Fig. 2. Here, since the force is a state variable and the initial
and final temperatures of the band are the same, to good
approximation the measurement is performed isothermal-
ly. More complicated expressions may be used to calculate
this derivative.® The experimentally determined value for
(dF /3L)  is then compared to the value calculated for the
equation of state, namely,

OF| AT | 24TL;

ALy L, T
This form follows the slope—intercept form of a straight
line, y=mx+b, with x=1/{(L)?,  where
(L) = (L, + L;)/2 is the mean length of the rubber band
between the two data points used to calculate (AF /AL) ;.
Since 24ATL ] is a constant at constant temperature, the
graph of AF /AL vs (L) ~* should be a straight line. A
graph of the experimentally determined AF /AL vs {L ) ~*
is shown in Fig. 3. A standard least-squares fit to the data
indicate that the slope is (1.73 4+ 1.0) X 10’ dyn cm? and
the intercept is (0.16 4- 3.9) X 10* dyn/cm. From these
data A4 is calculated in two ways: from the slope,
A = slope/2TL } = 920 + 530 dyn/K; from the intercept,

(3)

(4)
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Fig. 3. Graph of experimentally determined AF /AL vs 1/{L ).". Typical

error bars and the best straight line through the data are shown. The noise
inherent in numerical differentiation is apparent.
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A = (intercept)L,/T = 31 4+ 730 dyn/K. The uncertain-
ty in the determination of A using this technique is quite
large, which indicates that one should not use this tech-
nique. The reason is that numerical differentiation of the
data introduces a great deal of noise into the determination
of the coefficient 4.

Also note that the data in Fig. 3 appear to deviate most
from the least-square straight line at large 1/{(L *). This
corresponds to small (L ), where small uncertainties in the
length lead to greater uncertainties in the values of
(AF /AL).However, an analysis of the data shown in Fig. 3
without the points with 1/(L )* greater than 4.25X 10~*
yields, from the slope, 4 = 872 + 300dyn/K, and from the
intercept, 4 = 27 4 700 dyn/K, which is not an improve-
ment. It is the noise introduced by numerical differenti-
ation that is the origin of the large error in these results.

Another straight-line form of analysis is suggested by the
equation

(L/Ly)’)F=AT[(L/Ly)* - 1], (5)

which follows directly from Eq. (1). A graph of (L /L,)*F
vs (L /L,)* — 1 is shown in Fig. 4. The data shown in this
figure were obtained using the value L, = 5.50 cm, as de-
termined by measurements of the straightened out but un-
stretched band. Upon performing linear least-squares anal-
ysis on these data, we find that the slope is
(1.33 +0.06) X 10° dyn, which corresponds to
A =473 4 20 dyn/K. The intercept should be 0; least-
squares analysis shows the intercept to be 800 4- 2000 dyn.
Clearly this is another useful technique for determining 4.
The primary weakness of this technique is that it does not
directly yield a value for L,. Thus L, must be determined
independently. An analysis of the data using L, = 5.52 cm
yields 4 = 476 + 20 dyn/K.

The use of all four types of analysis is instructive. The
ease of using a least-squares-fitting program to find both of
the parameters 4 and L, is balanced against the relative
difficulty of writing the program. The smoothing effects of
integration and the noise inherent in numerical differenti-
ation are clearly demonstrated. While these latter two ef-
fects are well known in the literature,”® this experiment
demonstrates these effects very convincingly. In particular,
the problems inherent in numerical differentiation of the
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Fig. 4. Graph of the experimentally determined (L /L,)*F vs
(L /L,)* — 1. Typical error bars and the best straight line through the
data are shown.
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data are evident from the large uncertainties in 4 obtained
using this technique. Finally, the utility of another straight-
line form of analysis that does not determine both 4 and L,,,
but only A4, is demonstrated. This last technique yields a
value of 4 in good agreement with the values obtained by
direct least-squares fitting of the data, and by calculating
the work done in stretching the rubber band.

III. MEASUREMENT OF 4 AT CONSTANT
LENGTH

In the second part of this experiment, we study

(JF /8T), . From the equation of state,
1 OF| _ A ALj

LaTl, L, L*

Since AL} is a constant, the graph of 1/L(AF/AL), vs
1/L? is expected to be a straight line.

We obtain the data for this portion of the experiment
using the setup shown in Fig. 5. A mass of 200 g is placed on
a triple beam balance and attached to the rubber band as
shown. By setting the balance off equilibrium, the stretch-
ing force exerted by the mass is shared by the band and the
balance, thereby letting the force the mass exerts on the
band be adjusted. The procedure followed is to pick a force,
zero the balance, and then measure the length of the rubber
band and the initial temperature, then heat the band and
measure the final temperature and force.

The temperature was measured using a thermocouple,
which has the advantage of being small, rugged, and easy to
position close to the band. Thermocouples are discussed in
many introductory thermodynamic books. Further details
about their use is available from several sources.’

After the initial length and temperature of the band are
measured, the band is heated to about 50 °C. At higher
temperatures the rubber band may permanently deform;
this might also vary for different types of bands and should
be verified for the particular type of band studied. The bal-

(6)

_ |

band support —_—
thermocouple _
o ~N L heater
rubber band
41g hook?
200 g

I
balance pan I i

Fig. 5. Diagram of the apparatus used to determine (3F /3T) .
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Fig. 6. Graph of experimentally determined 1/L(AF/AT) vs 1/L".

ance is again zeroed to determine the change in force
(through F = mg) caused by the band’s “desire” to con-
tract. The heater used must be one that heats the band
uniformly. A heating lamp will not work if it is placed too
close to the band. The authors recommend a typical house-
hold space heater to heat the rubber band. Once again a
vernier caliper is used to measure the length of the band.
Since the mass is placed at the center of the balance pan and
the pan is zeroed at the start and end of the experiment, the
change in length of the band is negligible. This procedure is
repeated several times for initial forces in the same range as
in the first part of the experiment. Figure 6 shows a graph
of 1/L(AF /AT) vs 1/L °. Thedataindeed fit astraight line;
a least-squares fit to the data indicates that the slope is
(—19.244)x10° dyncm? K~ and the intercept is
78 + 10 dyn cm ~ 'K ~'. With these data we calculate 4
from both the slope and the intercept and find
A= — (slope)/L3 =610 + 120 dyn/K and 4 = (inter-
cept) X L, = 435 + 60 dyn/K.

These values of A4 differ from the value obtained using
the more reliable of the techniques described in Sec.II by
from 9% to 15%. Nevertheless, when error bars are includ-
ed, the values of 4 obtained using techniques 1, 2, and 4
from Sec. IT and the present technique all agree. The rather
large errors obtained using the present technique are large-
ly the result of taking differences in two rather large quanti-
ties, the force and the temperature, and then dividing one
difference by the other. The error in T'is largely minimized
by making the temperature change as large as possible.
However, the error in Fis largely determined by the uncer-
tainty of the balance, and to an undetermined amount by
nonuniform heating of the band, and possible small
changes in its length.

IV. DISCUSSION

One of the purposes of the experiment we have consid-
ered is to teach various techniques for analyzing experi-
mental data to obtain the parameters of interest. Therefore,
ultimately one must ask “Which value of 4 is most trust-
worthy, and why?”’

We would judge that the best value is obtained from the
least-squares fit directly to Eq. (1), i.e., method 1. This
value is obtained without performing any operations, such
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as multiplication, differentiation, or integration of the raw
data, before fitting the data to a theoretical form. Also, this
technique yields an independent measurement of the
length with zero applied force. Further, the errors involved
in obtaining A and in its value are well defined and known.

Our second choice is the integration technique, i.e.,
method 2. As discussed in the literature,® this technique
tends to average out the errors in the raw data. A weakness
of this technique of analysis is that the resultant value of 4
is strongly dependent on L, as is evident from Eq. (2).
Thus an independent and accurate determination of L,
must be made. Since most rubber bands do not have
straight, roughly parallel sides when there is no applied
force, it is difficult to obtain an accurate value for L,

A close tie for the second best technique is fitting the
modified data to a straight-line form, i.e., method 4. This
technique has two potential weaknesses. First, it does not
determine L, Then, since L, occurs in the straight-line
form to which the data are fitted, the value found for 4
depends on the value chosen for L,. Second, because the
force is multiplied by (L /L,)?, there is an unavoidable in-
crease in the uncertainty of the fitted dependent variable.
In fact, for forces determined to an accuracy only a few
times better than those in the present experiment, the error
in the independent variable will be comparable to or larger
than the error in the dependent variable and a least-squares
fit with errors in both coordinates will be necessary.'®

Our fourth choice is measuring the temperature depend-
ence of the force at constant length. The purpose of this
section of the experiment was to verify the temperature
dependence of the force when the length of the band is
constant. As we discussed in Sec. I11, there are inherently
larger errors in determining A using this technique than in
all the techniques considered in Sec. II save differentiation
of the data.

As we discussed earlier, numerical differentiation of the
raw data is not a good method of analysis for this experi-
ment. Nevertheless, the various values of 4 are, to within
experimental error, self-consistent. Further, the rubber
band used is a good approximation of an ideal elastic sub-
stance, and, to good approximation, obeys the theoretical
equation of state, Eq. (1). Finally, we note that there is
negligible hysteresis—the effects of temperature and ap-
plied force on the rubber band are reproducible and repea-
table, provided the band is not overheated or over-
stretched.

VI. CONCLUSION

This experiment presents the student with an opportuni-
ty to verify the equation of state of a common rubber band,
study techniques for obtaining experimental parameters
from data, and explore the thermodynamics of an everyday
object.
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The availability of powerful microcomputers with graphics capabilities expands the range of
numerical procedures that can be employed for undergraduate use. The use of simple software
packages for the evaluation of multidimensional WKB approximate eigenvalues is discussed.
Introductory courses in quantum mechanics rarely make use of semiclassical theories, such as
WKSB, to relate quantum mechanics to classical mechanics. This relationship can be helpful for
the student’s understanding of quantum mechanics, and a computer experiment can provide a
useful avenue for making the concepts concrete. The major components of the approach involve
the use of a package for the integration of differential equations, to treat the classical equations of
motion, and a computer-aided design package to determine the phase integral areas. The codes
are not expensive, and all exploit the graphical capabilities of microcomputers, which are critical
for visualizing the relationship between classical and quantum ideas.

L. INTRODUCTION

For many years, the WKB approximation,' also called
the semiclassical method, has been one of the standard
methods for determining the eigenvalues of the Schro-
dinger equation when the potential energy function does
not have a simple form. Almost all standard textbooks on
quantum mechanics discuss the method as applicable to
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systems with large mass or large quantum numbers. Dur-
ing the past 10 years, a number of methods have been devel-
oped to calculate WKB eigenvalues for multidimensional
nonseparable Hamiltonian systems.? One of the most use-
ful and practical of the exact multidimensional WKB
methods is the surface of section (SOS) method,> which
computes the needed integrals from Poincaré surfaces of
section. One purpose of this article is to introduce this
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