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Lecture 1 : The interior solution: Oppenheimer-Volkoff
equation

The Schwarzschild solution expresses the gravitational field of a finite symmetric mass
distribution outside it. There is a result, known as the Birkhoff theorem, which says that the
field of a static spherically symmetric mass distribution in vacuum will always be exactly
the Schwarzschild type, regardless of what kind of distribution is there inside as long as it
is spherically symmetric.

We now look at the interior solution where Tµν , assumed to be as for a perfect fluid

Tµν = pgµν + (ρ+ p/c2)UµUν

is not zero.

If it is static, then the metric is of the form

−a(r)(dx0)2 + b(r)(dr)2 + r2(dθ)2 + r2 sin2 θ(dφ2),

and the velocities Uµ of fluid trajectories are just

Uµ = (c/
√
a, 0, 0, 0).

The stress-energy tensor corresponding to it is

Tµν = diagonal

(
ρc2

a
,
p

b
,
p

r2
,

p

r2 sin2 θ

)
Tµν = diagonal

(
ρc2a, pb, pr2, pr2 sin2 θ

)
where ρ is the mass density and p the pressure.

The various tensors for the Schwarzschild have been calculated before:

Γ0
01 = Γ0

10 = (ln a)′/2

Γ1
00 = a′/2b, Γ1

11 = (ln b)′/2, Γ1
22 = −r/b, Γ1

33 = −r sin2 θ/b

Γ2
12 = Γ2

21 = 1/r, Γ2
33 = − sin θ cos θ

Γ3
23 = Γ3

32 = cot θ, Γ3
13 = Γ3

31 = 1/r

R00 =
a

2b

[
A′′ +

1

2
A′(A′ −B′) +

2A′

r

]
R11 = −1

2

[
A′′ +

1

2
A′(A′ −B′)− 2B′

r

]
R22 = −1

b

[r
2

(A′ −B′) + 1− b
]

R33 = − sin2 θ

b

[r
2

(A′ −B′) + 1− b
]

where we use the short hand a = expA and b = expB.

1



The remaining Rµν are zero. The curvature scalar is

R = −A
′′

b
− A′ −B′

b

[
A′

2
+

2

r

]
+

2

r2

(
1− 1

b

)
and finally, the Einstein equation

G00 =
ab′

b2r
+

a

r2

(
1− 1

b

)
=

8πG

c4
ρc2a

G11 =
a′

ar
+

1

r2
(1− b) =

8πG

c4
bp

G22 =
r2

2b

[
2

(
a′

a

)′
+

(
a′

a
+

2

r

)(
a′

a
− b′

b

)]
=

8πG

c4
r2p

The equation for G33 is the same as for G22.

The G00 Einstein equation can be written after canceling out a, and multiplying by r2[
r

(
1− 1

b

)]′
=

8πG

c2
ρr2

which integrates to

r

(
1− 1

b

)
=

2G

c2

∫ r

0

4πr2ρ(r)dr.

This determines b to be of the same form as the vacuum Schwarzschild metric component

b =

(
1− 2Gm(r)

rc2

)−1
.

where

m(r) =

∫ r

0

4πr2ρ(r)dr.

The G11 equation then determines A′ = a′/a as

A′ = 2G
m+ 4πr3p/c2

r(rc2 − 2mG)
.

The third equation involves double primes, or second derivatives and will give us the variation
of pressure or density with r.

In practice it is much easier to use the covariant divergence of Tµν equal to zero, which
after all is a consequence of the Bianchi identity. So we use

Jµ ≡ Tµν ;ν = Tµ0;0 + Tµ1;1 + Tµ2;2 + Tµ3;3 = 0

in place of the G33 equation.

Tµ0;0 = Γ0
01T

µ1 + Γµ00T
00

Tµ1;1 = Tµ1,1 + Γ1
11T

µ1 + Γµ11T
11

Tµ2;2 = Γ2
21T

µ1 + Γµ22T
22

Tµ3;3 = Γ3
31T

µ1 + Γ3
32T

µ2 + Γµ33T
33.
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Of the four equations Jµ = 0 three are trivial 0 = 0, and only one non-trivial.

J0 = 0,

J1 =
1

2b

(
2p′ +A′(p+ ρc2)

)
= 0

J2 = 0

J3 = 0

The nontrivial equation determines the rate of change of pressure as

p′ =
dp

dr
= −G (ρc2 + p)(m+ 4πr3p/c2)

r(rc2 − 2mG)

which can be written more transparently as

dp

dr
= −Gm(r)

r2
ρ

[
1 +

p

ρc2

] [
1 +

4πr3p

m(r)c2

] [
1− 2m(r)G

rc2

]−1
where the three square brackets show the relativistic corrections to the Newtonian equation
for equilibrium for a small area ∆A

∆Adp = −(ρ∆Adr)
Gm(r)

r2
.

This equation can be numerically integrated starting from r = 0. Choose the central pressure
p(0) and therefore the density ρ(0) from the equation of state, and progressively calculate
p and ρ which are related by the equation of state. At the boundary r = Rof the star
p = 0, and ρ remains zero then on and the Schwarzschild solution takes over. See that
the correction factors due to relativity tend to increase the magnitude of pressure gradient,
making the star size (determined by p = 0) smaller. For a given equation of state, increasing
central pressure may make the size of the star as small as 9/8 of the Schwarzschild radius,
which is what happens for a neutron star. Beyond that a star may become a black hole.
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Lecture 2 : Fermi pressure

When a star runs out of its ’nuclear fuel’,

↙ ↘

it can become an equilibrium star, or, it may collapse endlessly

↓

If supported by electron fermi pressure
it is a ‘white dwarf’

↓

If supported by neutron fermi pressure
it is a neutron star.

The usual star like our Sun starts its life when a vast amount of gas, mainly Hydrogen,
falls under gravity and becomes heated up. Hydrogen burns into helium by the “p-p chain”:

p+ p → d+ e+ + ν

p+ d → 3He+ γ

2 3He → 4He+ 2p

As long as there are conditions favoring nuclear reactions for the formation of heavier nuclei
with release of energy, the star may keep radiating and forming a core of heavier nuclei.
But the binding energy curve shows that beyond iron, this is theoretically not possible to
produce energy this way.

A star becomes a ‘white dwarf’ when the the equilibrium against gravity is not thermal
pressure but the electron degeneracy pressure of its core of heavier elements. Such stars are
small in size (a few thousand kilometers), mass of the order of a solar mass, have a very
high surface temperature, that is why they appear ‘white’.

It is not necessary for a star to reach the iron end point. Depending on the initial mass
and other parameters it may follow other paths.

Roughly speaking, stars upto a few solar masses become white dwarfs, whereas heavier
than 10 solar masses may become neutron stars through stages of red-giants or supernova
explosions.

A white dwarf will have a core of high density with electrons free and not bound to
nuclei. As electrons are fermions, they exert pressure even at temperature equal to absolute
zero! The reason for this is that not more than one electron can be in a quantum state and
even at absolute zero there will be states filled unto the Fermi level.

If there are N electrons in a cubical box of side L, then its its discrete momenta take
values

p = h̄k = h̄
2π

L
(n1, n2, n3)
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where (n1, n2, n3) are integers. There are thus two (for spin) quantum states In the k space
per (2π/L)3 volume. The N particles fill upk-space from zero up to |k| = kF where

N = 2× 4π

3
k3F ×

(
L

2π

)3

=
k3F
3π2

L3.

The momentum pF = h̄kF is called the Fermi momentum. The above expression can be
written in terms of the number density n = N/L3

n =
k3F
3π2

.

At absolute zero the states are filled up from the ground state upwards. Even at absolute
zero the Fermi momentum may be high enough if the density is high enough.

To calculate pressure, we can reason as follows. If we reduce the size of the box slightly,
the states become more spread out in k-space (or momentum space). The same number
N will now of up to a higher value of the Fermi momentum. The total energy (sum of all
energies upto the Fermi level) will also increase. This will be the work done against pressure.

p = − ∂E

∂V

∣∣∣∣
N

.

It is preferable to use the number density n = N/V in place of the volume variable V and
energy density ρ = E/V . As

∂

∂V
= − N

V 2

∂

∂n
,

we can write (with the understanding that N is kept constant )

−p =
∂E

∂V
=
∂(ρV )

∂V
= ρ+ V

∂ρ

∂V
= ρ− n∂ρ

∂n
.

If we know the dependence of the energy density ρ on the number density n, we can find
the equation of state giving pressure as a function of energy density.

For the extreme cases of non-relativistic (NR) and ultra relativistic (R) particles the
energy momentum relations allow us to calculate energy density.

For NR case: mc2 + h̄2k2/2m. There are 2L3d3k/(2π)3 states in d3k volume in k-space.
The energy in the NR case for all the occupied states is therefore

E = 2
L3

8π3

∫ kF

0

4πk2[mc2 + h̄2k2/2m]dk

which gives using the relation of kF to n

ρ = nmc2 +
3h̄2

10m
(3π2)2/3n5/3 (NR).

Similarly for ultra high relativistic case where energy is simply h̄kc (the rest mass is neglected
compared to kinetic energy),

ρ =
3

4
(3π2)1/3h̄cn4/3 (R).
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From these the pressure can be calculated.

p =
1

5
(3π2)2/3

h̄2

m
n5/3 (NR)

p =
1

4
(3π2)1/3h̄cn4/3 (R)

Once we have the equation of state, it is possible to integrate numerically the Oppenheimer-
Volkoff equations starting from the central density and pressure. We continue integration
and check if the solution corresponds to a finite value of r = R where pressure goes to zero.
That value also determines the value of the mass of the star. Thus for each value of ρ(0)
there is a value of R as well as M . A plot of these is shown for different values of ρ(0).
For about 1011 g/cm3 the mass is around 1.4 solar masses and the configuration becomes
unstable: the electron pressure is unable to hold. This is the Chandrasekar limit for white
dwarfs.
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