Let's Start Talking *

Spin Wave Function and Spin Operators

A. K. Kapoor http://0space.org/users/kapoor

akkapoor@cmi.ac.in; akkhcu@gmail.com

Contents

1 F	Representation of Spin Wave Function	1
2 F	Representation of Spin Operators	2
3 S	Spin 1 matrices	2
4 S	Spin $1/2$ matrices	3

1 Representation of Spin Wave Function

In order to describe the spin degrees of freedom, it is convenient to introduce a representation. For this we need to select a complete commuting set of hermitian operators and construct an orthonormal basis from their simultaneous eigenvectors. A suitable set consists of \vec{S}^2 and S_z . In order to proceed further, we want to work with an explicit representation of the spin. We arrange the eigenvectors $|s,m\rangle$ in *descending order* in m to get a basis $\{|s,m\rangle|m=s,s-1,\cdots,-s+1,-s\}$. An arbitrary state vector $|x\rangle$ is then a linear combination of the basis elements

$$|x\rangle = \sum_{m=-s}^{s} \alpha_m |sm\rangle \tag{1}$$

The interpretation of the numbers α_m is that square of its modulus, $|\alpha_k|^2$, gives the probability that S_z will have the corresponding value $m\hbar$.

^{*}Updated:Jul 12, 2021; Ver 0.x

Following the convention of arranging the basis vectors in the order of decreasing values for the spin projection S_z , the $|x\rangle$ will be represented by a column vector

$$\chi = \begin{pmatrix} \alpha_s \\ \alpha_{s-1} \\ \vdots \\ \alpha_{-s} \end{pmatrix}$$
(2)

with (2s+1) components.

2 Representation of Spin Operators

The spin operators \vec{S} will be represented by matrices with (2s+1) rows and (2s+1) columns. First of all, the matrix for S_z will be diagonal matrix with eigenvalues of S_z appearing along the main diagonal.

$$S_{z} = \hbar \begin{pmatrix} s & 0 & 0 & \cdots & \cdots & 0 \\ 0 & s-1 & 0 & \cdots & \cdots & 0 \\ 0 & 0 & s-2 & \cdots & \cdots & 0 \\ 0 & 0 & 0 & \cdots & \cdots & \cdots \\ \cdots & \cdots & \cdots & \cdots & \cdots & 0 \\ 0 & 0 & 0 & \cdots & \cdots & -s \end{pmatrix}$$
(3)

The matrices for S_x and S_y are found by first obtaining the matrices for S_{\pm} and using $S_x = \frac{1}{2}(S_+ + S_-)$ and $\frac{-i}{2}(S_+ - S_-)$. To construct these matrices one needs to know the matrix elements $\langle s, m' | S_{\pm} | s, m \rangle$ which can be computed by making use of the result

$$S_{\pm}|s,m\rangle = \sqrt{s(s+1) - m(m\pm 1)}\,\hbar\,|s,m\pm 1\rangle \tag{4}$$

3 Spin 1 matrices

The corresponding result for the spin one matrices is

$$S_x = \frac{\hbar}{\sqrt{2}} \begin{pmatrix} 0 & 1 & 0\\ 1 & 0 & 1\\ 0 & 1 & 0 \end{pmatrix}; \quad S_y = \frac{\hbar}{\sqrt{2}} \begin{pmatrix} 0 & -i & 0\\ i & 0 & -i\\ 0 & i & 0 \end{pmatrix}; \quad S_z = \hbar \begin{pmatrix} 1 & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 & -1 \end{pmatrix}$$

and is left as en exercise for the reader.

4 Spin 1/2 matrices

We shall give the answer for spin $\frac{1}{2}$ and spin 1 matrices. The spin half matrices are related to the Pauli matrices $\sigma_x, \sigma_y, \sigma_z$ and are given by

$$\vec{S} = \frac{\hbar}{2}\vec{\sigma} \tag{5}$$

This result is derived in the solved problem below.

qm-lec	-2000	2 0.x	Created : May 6, 2016	Printed: Octob	er 27, 2021	KApoor
Pro	OFS	LICENSE	: CREATIVE COMMONS	NO WARRANTY,	Implied or	OTHERWISE
Open H	AT _E XFil	le	qm-lec-20002			

)