Notes for Lectures in Quantum Mechanics *

Validity of Born Approximation

Square Well Potential

A. K. Kapoor

http://0space.org/users/kapoor

akkapoor@cmi.ac.in; akkhcu@gmail.com

For a square well potential of strength V_0 and range R_0 , the expression in the left hand side Eq.(??) takes the form

$$\frac{\mu V_0}{\hbar^2 k} \left| \int_0^{R_0} \left(e^{2ikr} - 1 \right) dr \right| = \frac{\mu V_0}{\hbar^2 k} \left| \frac{e^{2ikR_0} - 1}{2ik} - R_0 \right| \tag{1}$$

$$= \frac{\mu V_0}{2\hbar^2 k^2} \left| e^{2ikR_0} - 2ikR_0 - 1 \right| \tag{2}$$

Using the notation $\rho = 2kR_0$ the condition, that the Born approximation be valid, takes the form

$$\frac{\mu V_0}{2\hbar^2 k^2} \left(\rho^2 - 2\rho \sin \rho - 2\cos \rho + 2\right)^{\frac{1}{2}} << \tag{3}$$

we shall consider the low energy and high energy cases separately.

Low energy scattering

At low energy the de Broglie wave length is much larger than the range of the potential i.e. $2kR_0 \ll 1$. We then have

$$\rho^{2} - 2\rho \sin \rho + 2\cos \rho$$

$$\approx \rho^{2} - 2\rho \left(\rho - \frac{\rho^{3}}{6} + \cdots\right) - 2\left(1 - \frac{\rho^{2}}{2} + \frac{\rho^{4}}{24} + \cdots\right) + 2$$

$$= \frac{\rho^{4}}{4}$$

$$(4)$$

Hence at low energies the Born approximation is applicable if

$$\frac{\mu V_0}{2\hbar^2 k^2} \frac{\rho^2}{2} = \frac{\mu V_0 R_0^2}{\hbar^2} << 1 \tag{5}$$

The above condition implies that the potential is so weak that the bound state does not exist.

High energy limit

In the high energy limit $\rho >> 1$ and we get

$$\left(\rho^2 - 2\rho\sin\rho - 2\cos\rho + 2\right)^{\frac{1}{2}} \approx \rho \tag{6}$$

^{*}Updated:Jul 9 2021; Ver 0.x

and hence the Born approximation is valid if

$$\frac{\mu V_0}{2\hbar^2 k^2} \rho << 1 \tag{7}$$

or

$$\frac{\mu V_0 a}{\hbar v} << 1 \tag{8}$$

qm-lec-18007 0.x Created: Jul 2016 Printed: October 25, 2021 KApoor

PROOFS LICENSE: CREATIVE COMMONS NO WARRANTY, IMPLIED OR OTHERWISE

Open MEXFile qm-lec-18007