Rayleigh Ritz Variation Method

A. K. Kapoor http://0space.org/users/kapoor

akkapoor@cmi.ac.in; akkhcu@gmail.com

1 A Theorem

Let E_0, E_1, E_2, \cdots be the exact energy eigenvalues of Hamiltonian of a system corresponding to the ground state, the first excited state, the second excited state etc., respectively,

$$Hu_{\alpha} = E_{\alpha}u_{\alpha} \tag{1}$$

where u_{α} are eigenfunctions corresponding to eigenvalue E_{α} . Let ψ be any square integrable function then we have the following results.

$$E_{\alpha} \le \frac{\int \psi^* H \psi d^2 x}{\int \psi^* \psi d^3 x} \tag{2}$$

2 Proof of the Theorem

Let ψ be expanded as

$$\psi = \sum C_n u_n \tag{3}$$

Then

$$(\psi,\psi) = \int \psi^* \psi d^3 x = \sum_n |C_n|^2 \tag{4}$$

and

$$\int \psi^* H \psi d^3 x = \left(\sum_n C_n u_n, H \sum_n C_n u_m \right)$$
$$= \sum_n \sum_m C_n^* C_m (u_n, H u_m)$$
$$= \sum_n \sum_m C_n^* C_m E_m (u_n, H u_m)$$
$$= \sum_n \sum_m C_n^* C_m \delta_{mn} E_m$$
$$= \sum_{n=0} E_n |C_n|^2$$
(5)

Consider

$$\int \psi^* H \psi d^3 x - E_0 \int d^3 x \psi^* \psi = \sum_{\substack{n=0\\\infty}}^{\infty} E_n |C_n|^2 - E_0 \sum_{n=0}^{\infty} |C_n|^2 \qquad (6)$$

$$= \sum_{n=1}^{\infty} (E_n - E_0) |C_n|^2$$
 (7)

The right hand side is positive because $E_n - E_0 > 0$, for all $n \neq 0$. Hence

$$\therefore \int \psi^* H \psi d^3 x - E_0 \int \psi^* \psi d^3 x \ge 0 \quad . \tag{8}$$

or

$$\int \psi^* H \psi d^3 x \ge E_0 \int \psi^* \psi d^3 x \quad . \tag{9}$$

or

$$\frac{\int \psi^* H \psi d^3 x}{\int \psi^* \psi d^3 x} \ge E_0 \quad . \tag{10}$$

Thus we have

$$E_0 \le \frac{\int \psi^* H \psi d^3 x}{\int \psi^* \psi d^3 x} \tag{11}$$

for all square integrable ψ .

3 Ritz Variation method

The above result can be used to estimate the ground state energy as follows

- 1. Choose a trial wave function ψ which is square integrable.
- 2. Normalize it to unity $\int \psi^* \psi d^3 x = 1$.
- 3. Compute

$$E_{\psi} \equiv \int \psi^* H \psi d^3 x \tag{12}$$

4. The trial wave function will contain some unknown parameter(s). Let the unknown parameter be called α . Fix α such that E_{ψ} is minimum by demanding

$$\frac{\partial E_{\psi}}{\partial \alpha} = 0 \tag{13}$$

The value α_0 , for which E_{ψ} is minimum, can now be used for calculating E_{ψ} which gives an estimate for the ground state energy. A good choice of trial wave function can lead to very good estimate for the ground state energy. The variation method has been successfully applied to the energy for ground state of He atom. The variation method is most useful for the ground state energy although it can be modified to estimate energies of excited states also.