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Using ladder operators

In this connection with addition of angular momenta, the following results from the theory

of angular momentum derived earlier will be useful.

JelIMY = /(J(J+1)— MM £1)|JM £1) (1)
(S + I jimujema) = /(1 + 1) — (ma £ 1) jima £ Ljamo)
+ V(52042 + 1) — ma(mg £ 1)) |jimyjams + 1) (2)

On taking conjugate of Eq. we get

Grmujama|(J) + I8 = (a(ma £ 1) jama| /(G Gy + 1) — (ma £1)
+(jimuja(ma + 1)V ja(ja + 1) —ma(ma £ 1)) (3)

which is a consequence of the angular momentum commutation relations. Considering the

matrix element
(jrjomama|JL|TM) = (j1jomama|(JS + JP)| M) (4)

and using Eq. and Eq. we get two relations, one for J; and

VI +1) = M(M + 1) (jrjamame|J (M + 1))
= (jijomi — mao|JM)\/j1(j1 + 1) — mi(my + 1)
+(jrjamama — 1JIM)\/ja(j2 + 1) — ma(ma + 1) (5)

and a second relation for J_

VI(J 4 1) = M(M = 1)(jima, jamo| J (M — 1))
= (i(my + 1)jama IM)\/j1(j1 + 1) — my(mq — 1)
+(jima, ja(ma + 1)|JM)\/ja(j2 + 1) — ma(mg — 1) (6)

We will make repeated use of the results Eq.,Eq.@ given above. These equations can
be used successively with M = J,J — 1, ... to compute the Clebsch Gordon coefficients.



Restrictions on total JM values

The restrictions 1) —4), given above, on the allowed values of the total angular momentum
J will be derived by considering the matrix elements (j; jomimal|J,|JM),(jijamima|.J,|J M)
and (j1jomima|J1|JM) and by repeated use of and @

Proof of M = mj; 4+ ms The first result is easy to prove. Since J, = Jz(l) + JZ(Z), taking

the matrix element and using the properties

J:|JM) = Mh|JM) (7)
(S + I jimagama) = (my +ma)hljimijams) (8)

we obtain
(IMI(JED + I = T2 jimajama) =0 (9)

Therefore,
(m1 +mo — M){JM|jimijamsa) =0 (10)

Thus if M # mj + mg, the Clebsch Gordon coefficient (J M |j1j2m1mg) has to be zero. In

other words, a nonzero value of (JM/|j1jamims) is possible only when
M =mq+ mo (1 1)
Range of J values The results will be derived by considering the matrix elements

(jimigomal|J.|J M) and
(jima, jama|Jx|JM).

Note that there is one relation between three the variables mimo, M. Hence we need
the Clebsch Gordon coefficients for all allowed values of M and m;which vary in the range
M=—J,---,J and mj; = —j1,--- ,j1. We will now argue that these can all be related to
single coefficient (JJ|; jiJ — j1). They can all be related to (j1j1, jo(J — j1)|JJ)

Use with M = J,m; = j;

0 x <j1m1,j — QMQ‘J(M + 1)>
= (101 — 1), joma| JI)\/ 251
+(jrgr, 2 (ma — DIM)\/Ga(ja + 1) — ma(mg — 1) (12)

Use @ with M = J m; = j;
V2J(; jimalJ(J — 1))
= (J1(j1 +1),52ma|JM) x 0
+ (g, j2(ma + 1)|TM) v/ ja(j2 + 1) — ma(ma + 1) (13)

Use with M =J —1,m; = j;

V2J(; jima| JJ)
= ((j1— Dmo|J(J — 1))\/251
+(j1i1, 2 (ma — DI (J = 1))3/ (j2(ja + 1) — ma(mg — 1) (14)



Use @withM:J,m1:j1—1

V2J(j1(j1 = 1), jama| J(J = 1))
= (Juj1,gamelJJ) x 0
+(j1(j1 — 1), jomng + 1|JM)\/ja(ja + 1) — ma(mg + 1) (15)

Use (6) with M =J —1,m; = j

V(T +M)(J — M+ 1)(jrjamime| J(J — 2))
= (j1(j1 + 1), joma| JM)\/§1(j1 + 1) — my(my + 1)
+(j1g2d1(me + 1)[TM)/(j2(j2 + 1) — ma(ma + 1) (16)

We can continue in this fashion. We see that the Clebsch Gordon coefficient for different

pairs of values of M, m; are known in terms of a single coefficient for M = J,m; = j; as

follows
Equation New Coeflicient Known in terms of
Eq. mlzjl—l,M:J mlzjl,M:J
Eq. mlzjl,M:J—l m1:j1,M:J

Eq. m=n—-1M=J-1 p,M=J—-landmi =5 —-1,M=J

Eq.(15) mi=h—-1,M=J-1 m=j—-1,M=J

Eq.(16) mi=ji,M=J-2 m=7j,M=J-1

Next we consider the state |jimy, jomeo) with mq = j; and mg = js. In this state M
has the highest value j; + jo.
All these coefficients can be fixed in terms of a single coefficient (jij1,jamo = (j —

j1)|J M) which is non zero only if j — j; lies in between —j; and j;. Thus
—J2=J—n <2 (17)
By repeating the above steps with j; and jo interchanged we would get
—j1<J—=J2<N (18)

These two conditions, Eq. and Eq.7 are equivalent to the requirement J > |j; — jo|.

Since maximum possible value of M = mq 4+ mo is j1 + jo we must have J < j; + jo. Thus



the total angular momentum is constrained to lie between |j; — j2| and j; + j2. The three

numbers J, j1, jo should be such that they satisfy triangle inequalities
lj1 — g2l < J <1+ jo (19)

It should be remarked that Eq.—Eq., written as conditions on j; and j9, are equiv-

alent to each of the following two alternate forms

|J —jo| <j1 <J+j2 and |J — 1] < j2 < J 441 (20)

J takes values in steps of 1 The range of J, the total angular momentum value, has

been determined; the minimum value being |j; — j2| and the maximum value is (j; + j2).
Are all integral, and half integral values, allowed in this range allowed 7 We must fix
which values of J are allowed and which ones are not allowed?

The state |j1j2mimse), when both m; and mgy have their maximum allowed values j;
and ja, the value of M = mj + ms is maximum and equal to j; + jo. There is only one

such state and this must correspond to J = ji + jo.
|J = (j1+j2), M = (j1 + j2)) = [jim1 = j1, jama = jo2) (21)

The next value of M = j; + jo — 1 corresponds to two linearly independent states corre-

sponding to
(a) m1 = j1—1,ma = j2, and
(b) m1 =j1,ma=j2—1

What are the corresponding J values? One combination of these two states must be the
M = j1 + jo — 1 partner of the state Eq.; and the other linear combination can only
correspond to the next value J = j; + jo — 1.Continuing in this way, we now consider

M = j1 + jo — 2 which will come from three sets of m1, msy values,i.e.,
(@) my=j1—2,mg = j
(b) m1 =j1 —1,mg = j2 — 1, and,
(c) m1=j1,ma = j2 —2

Of the three states |jimq, joms) corresponding the above values two linear combinations
will correspond to the J values j; + jo already found; a third linear combination must
therefore correspond to the value J = j; + j2 — 2. Proceeding in this fashion we see that
the successive J values differ by one. How are we sure that all the J wvalues have been
correctly identified 2. We will now count the number of states in two different ways to

confirm the conclusion that J takes all the values in the allowed range from |j; — ja| to

J1 + ja.



Count in two ways to cross check Thus we have two set of orthonormal bases

{|j1m17j2m2>’m1 = —J1, " ,J1,M2 = —j2,j2- - } (22)

and
{|j1]2aJM>‘J: ‘jl _j2‘7'” 7j1 +j27M: _J) 7<]} (23)

It is easily seen that the total number of vectors in two bases are equal. The number
of elements in the set (22)) is (2j1 + 1)(2j2 + 1) and in the set is also the same

J1+J2
> @T+1) = (21 +1)(252 + ). (24)
J=lj1—j2|
The two bases in Eq. and Eq. are orthonormal and hence the transformation
connecting the two must be a unitary transformation and the Clebsch Gordon coefficients

must satisfy the relations

> (rga; mumaljiged M)(TM|jyjo; mimb) = Syt Smyms, (25)
JM
> (I M|j1jo; mama) (jijo; mamaljija ' M') = 85p0mm (26)
mi,m2

These relations can also be seen as a consequence of the completeness formula such as

S IMYIM| =1 (27)
JM
and a similar relation for the vectors |j172; mims).
The Clebsch Gordon coefficients for addition of angular momenta are tabulated. Two

such tables for jo = % and jo = 1 are given on the next page.
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