QM-17 Lecture Notes Recurrence Relations for CG Coefficients

A. K. Kapoor http://0space.org/users/kapoor akkapoor@cmi.ac.in; akkhcu@gmail.com

Using ladder operators

In this connection with addition of angular momenta, the following results from the theory of angular momentum derived earlier will be useful.

$$J_{\pm}|JM\rangle = \sqrt{(J(J+1) - M(M\pm 1))}|JM\pm 1\rangle \tag{1}$$

$$(J_{\pm}^{(1)} + J_{\pm}^{(2)})|j_1m_1j_2m_2\rangle = \sqrt{(j_1(j_1+1) - (m_1\pm 1))}|j_1m_1\pm 1j_2m_2\rangle + \sqrt{(j_2(j_2+1) - m_2(m_2\pm 1)))}|j_1m_1j_2m_2\pm 1\rangle$$
(2)

On taking conjugate of Eq.(2) we get

$$\langle j_1 m_1 j_2 m_2 | (J_{\mp}^{(1)} + J_{\mp}^{(2)}) = \langle j_1 (m_1 \pm 1) j_2 m_2 | \sqrt{(j_1 (j_1 + 1) - (m_1 \pm 1))} + \langle j_1 m_1 j_2 (m_2 \pm 1) | \sqrt{j_2 (j_2 + 1) - m_2 (m_2 \pm 1))}$$
(3)

which is a consequence of the angular momentum commutation relations. Considering the matrix element

$$\langle j_1 j_2 m_1 m_2 | J_{\pm} | JM \rangle = \langle j_1 j_2 m_1 m_2 | (J_{\pm}^{(1)} + J_{\pm}^{(2)}) | JM \rangle \tag{4}$$

and using Eq.(1) and Eq.(3) we get two relations, one for J_+ and

$$\sqrt{J(J+1) - M(M+1)} \langle j_1 j_2 m_1 m_2 | J(M+1) \rangle
= \langle j_1 j_2 m_1 - 1 m_2 | JM \rangle \sqrt{j_1(j_1+1) - m_1(m_1+1)}
+ \langle j_1 j_2 m_1 m_2 - 1 | JM \rangle \sqrt{j_2(j_2+1) - m_2(m_2+1)}$$
(5)

and a second relation for J_{-}

$$\sqrt{J(J+1) - M(M-1)} \langle j_1 m_1, j_2 m_2 | J(M-1) \rangle
= \langle j_1(m_1+1) j_2 m_2 | JM \rangle \sqrt{j_1(j_1+1) - m_1(m_1-1)}
+ \langle j_1 m_1, j_2(m_2+1) | JM \rangle \sqrt{j_2(j_2+1) - m_2(m_2-1)}$$
(6)

We will make repeated use of the results Eq.(5), Eq.(6) given above. These equations can be used successively with M = J, J - 1, ... to compute the Clebsch Gordon coefficients.

Restrictions on total JM values

The restrictions 1) – 4), given above, on the allowed values of the total angular momentum J will be derived by considering the matrix elements $\langle j_1 j_2 m_1 m_2 | J_z | JM \rangle$, $\langle j_1 j_2 m_1 m_2 | J_z | JM \rangle$ and $\langle j_1 j_2 m_1 m_2 | J_{\pm} | JM \rangle$ and by repeated use of (5) and (6)

Proof of $M = m_1 + m_2$ The first result is easy to prove. Since $J_z = J_z^{(1)} + J_z^{(2)}$, taking the matrix element and using the properties

$$J_z |JM\rangle = M\hbar |JM\rangle \tag{7}$$

$$(J_z^{(1)} + J_z^{(2)})|j_1 m_1 j_2 m_2\rangle = (m_1 + m_2)\hbar |j_1 m_1 j_2 m_2\rangle$$
(8)

we obtain

$$\langle JM | (J_z^{(1)} + J_z^{(2)} - J_z) | j_1 m_1 j_2 m_2 \rangle = 0$$
(9)

Therefore,

$$(m_1 + m_2 - M)\langle JM | j_1 m_1 j_2 m_2 \rangle = 0$$
(10)

Thus if $M \neq m_1 + m_2$, the Clebsch Gordon coefficient $\langle JM | j_1 j_2 m_1 m_2 \rangle$ has to be zero. In other words, a nonzero value of $\langle JM | j_1 j_2 m_1 m_2 \rangle$ is possible only when

$$M = m_1 + m_2 \tag{11}$$

Range of *J* **values** The results will be derived by considering the matrix elements and $\langle j_1 m_1 j_2 m_2 | J_z | JM \rangle$ and $\langle j_1 m_1, j_2 m_2 | J_{\pm} | JM \rangle$.

Note that there is one relation between three the variables m_1m_2 , M. Hence we need the Clebsch Gordon coefficients for all allowed values of M and m_1 which vary in the range $M = -J, \dots, J$ and $m_1 = -j_1, \dots, j_1$. We will now argue that these can all be related to single coefficient $\langle JJ |; j_1J - j_1 \rangle$. They can all be related to $\langle j_1j_1, j_2(J - j_1) | JJ \rangle$

Use (5) with $M = J, m_1 = j_1$

$$0 \times \langle j_1 m_1, j - 2m_2 | J(M+1) \rangle$$

= $\langle j_1(j_1-1), j_2 m_2 | JJ \rangle \sqrt{2j_1}$
+ $\langle j_1 j_1, j_2(m_2-1) | JM \rangle \sqrt{j_2(j_2+1) - m_2(m_2-1)}$ (12)

$$\underline{\mathbf{Use}} \ (6) \ \mathbf{with} \ M = J, m_1 = j_i
 \sqrt{2J} \langle; j_1 m_2 | J(J-1) \rangle
 = \langle j_1(j_1+1), j_2 m_2 | JM \rangle \times 0
 + \langle j_1 j_1, j_2(m_2+1) | JM \rangle \sqrt{j_2(j_2+1) - m_2(m_2+1)}$$
(13)

$$\underbrace{\mathbf{Use} (5) \text{ with } M = J - 1, m_1 = j_1}_{\sqrt{2J} \langle; j_1 m_2 | JJ \rangle} \\
 = \langle; (j_1 - 1)m_2 | J(J - 1) \rangle \sqrt{2j_1} \\
 + \langle j_1 j_1, j_2 (m_2 - 1) | J(J - 1) \rangle \sqrt{(j_2 (j_2 + 1) - m_2 (m_2 - 1))}$$
(14)

Use (6) with $M = J, m_1 = j_1 - 1$

$$\begin{aligned}
\sqrt{2J}\langle j_1(j_1-1), j_2m_2 | J(J-1) \rangle \\
&= \langle j_1j_1, j_2m_2 | JJ \rangle \times 0 \\
&+ \langle j_1(j_1-1), j_2m_2 + 1 | JM \rangle \sqrt{j_2(j_2+1) - m_2(m_2+1)}
\end{aligned} \tag{15}$$

Use (6) with $M = J - 1, m_1 = j_1$

$$\sqrt{(J+M)(J-M+1)}\langle j_1 j_2 m_1 m_2 | J(J-2) \rangle
= \langle j_1(j_1+1), j_2 m_2 | JM \rangle \sqrt{j_1(j_1+1) - m_1(m_1+1)}
+ \langle j_1 j_2 j_1(m_2+1) | JM \rangle \sqrt{(j_2(j_2+1) - m_2(m_2+1))}$$
(16)

We can continue in this fashion. We see that the Clebsch Gordon coefficient for different pairs of values of M, m_1 are known in terms of a single coefficient for $M = J, m_1 = j_i$ as follows

Equation	New Coefficient	Known in terms of
Eq.(12)	$m_1 = j_1 - 1, M = J$	$m_1 = j_1, M = J$
Eq.(13)	$m_1 = j_1, M = J - 1$	$m_1 = j_1, M = J$
Eq.(14)	$m_1 = j_1 - 1, M = J - 1$	$j_1, M = J - 1$ and $m_1 = j_1 - 1, M = J$
Eq.(15)	$m_1 = j_1 - 1, M = J - 1$	$m_1 = j_1 - 1, M = J$
Eq.(16)	$m_1 = j_1, M = J - 2$	$m = j_1, M = J - 1$

Next we consider the state $|j_1m_1, j_2m_2\rangle$ with $m_1 = j_1$ and $m_2 = j_2$. In this state M has the highest value $j_1 + j_2$.

All these coefficients can be fixed in terms of a single coefficient $\langle j_1 j_1, j_2 m_2 = (j - j_1) | JM \rangle$ which is non zero only if $j - j_1$ lies in between $-j_1$ and j_1 . Thus

$$-j_2 \le j - j_1 \le j_2 \tag{17}$$

By repeating the above steps with j_1 and j_2 interchanged we would get

$$-j_1 \le j - j_2 \le j_1 \tag{18}$$

These two conditions, Eq.(17) and Eq.(18), are equivalent to the requirement $J > |j_1 - j_2|$. Since maximum possible value of $M = m_1 + m_2$ is $j_1 + j_2$ we must have $J < j_1 + j_2$. Thus the total angular momentum is constrained to lie between $|j_1 - j_2|$ and $j_1 + j_2$. The three numbers J, j_1, j_2 should be such that they satisfy triangle inequalities

$$|j_1 - j_2| \le J \le j_1 + j_2. \tag{19}$$

It should be remarked that Eq.(17)-Eq.(19), written as conditions on j_1 and j_2 , are equivalent to each of the following two alternate forms

$$|J - j_2| \le j_1 \le J + j_2$$
 and $|J - j_1| \le j_2 \le J + j_1$. (20)

<u>J takes values in steps of 1</u> The range of J, the total angular momentum value, has been determined; the minimum value being $|j_1 - j_2|$ and the maximum value is $(j_1 + j_2)$. Are all integral, and half integral values, allowed in this range allowed ? We must fix which values of J are allowed and which ones are not allowed?

The state $|j_1j_2m_1m_2\rangle$, when both m_1 and m_2 have their maximum allowed values j_1 and j_2 , the value of $M = m_1 + m_2$ is maximum and equal to $j_1 + j_2$. There is only one such state and this must correspond to $J = j_1 + j_2$.

$$|J = (j_1 + j_2), M = (j_1 + j_2)\rangle = |j_1 m_1 = j_1, j_2 m_2 = j_2\rangle$$
(21)

The next value of $M = j_1 + j_2 - 1$ corresponds to two linearly independent states corresponding to

(a) $m_1 = j_1 - 1, m_2 = j_2$, and

(b)
$$m_1 = j_1, m_2 = j_2 - 1$$

What are the corresponding J values? One combination of these two states must be the $M = j_1 + j_2 - 1$ partner of the state Eq.(21); and the other linear combination can only correspond to the next value $J = j_1 + j_2 - 1$. Continuing in this way, we now consider $M = j_1 + j_2 - 2$ which will come from three sets of m_1, m_2 values, *i.e.*,

- (a) $m_1 = j_1 2, m_2 = j_2$
- (b) $m_1 = j_1 1, m_2 = j_2 1$, and,
- (c) $m_1 = j_1, m_2 = j_2 2$

Of the three states $|j_1m_1, j_2m_2\rangle$ corresponding the above values two linear combinations will correspond to the J values $j_1 + j_2$ already found; a third linear combination must therefore correspond to the value $J = j_1 + j_2 - 2$. Proceeding in this fashion we see that the successive J values differ by one. How are we sure that all the J values have been correctly identified ?. We will now count the number of states in two different ways to confirm the conclusion that J takes all the values in the allowed range from $|j_1 - j_2|$ to $j_1 + j_2$. Count in two ways to cross check Thus we have two set of orthonormal bases

$$\left\{ |j_1 m_1, j_2 m_2\rangle \middle| m_1 = -j_1, \cdots, j_1, m_2 = -j_2, j_2 \cdots \right\}$$
(22)

and

$$\left\{ |j_1 j_2; JM\rangle \middle| J = |j_1 - j_2|, \cdots, j_1 + j_2, M = -J, \cdots, J \right\}$$
(23)

It is easily seen that the total number of vectors in two bases are equal. The number of elements in the set (22)) is $(2j_1 + 1)(2j_2 + 1)$ and in the set (23) is also the same

$$\sum_{J=|j_1-j_2|}^{j_1+j_2} (2J+1) = (2j_1+1)(2j_2+1).$$
(24)

The two bases in Eq.(22) and Eq.(23) are orthonormal and hence the transformation connecting the two must be a unitary transformation and the Clebsch Gordon coefficients must satisfy the relations

$$\sum_{JM} \langle j_1 j_2; m_1 m_2 | j_1 j_2 JM \rangle \langle JM | j_1 j_2; m'_1 m'_2 \rangle = \delta_{m_1 m'_1} \delta_{m_2 m'_2}$$
(25)

$$\sum_{m_1,m_2} \langle JM|j_1j_2;m_1m_2\rangle\langle j_1j_2;m_1m_2|j_1j_2J'M'\rangle = \delta_{JJ'}\delta_{MM'}$$
(26)

These relations can also be seen as a consequence of the completeness formula such as

$$\sum_{JM} |JM\rangle \langle JM| = \hat{I}$$
⁽²⁷⁾

and a similar relation for the vectors $|j_1j_2; m_1m_2\rangle$.

The Clebsch Gordon coefficients for addition of angular momenta are tabulated. Two such tables for $j_2 = \frac{1}{2}$ and $j_2 = 1$ are given on the next page.

qm-lec-17004.pdf Ver 16.x	
Printed: October 23, 2021	
Created : Jul 2016	KApoor

No Warranty, Implied or Otherwise				
License:	Creative	Commons		
http://0space	PROOFS			