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Using ladder operators

In this connection with addition of angular momenta, the following results from the theory

of angular momentum derived earlier will be useful.

J±|JM〉 =
√

(J(J + 1)−M(M ± 1)|JM ± 1〉 (1)

(J
(1)
± + J

(2)
± )|j1m1j2m2〉 =

√
(j1(j1 + 1)− (m1 ± 1)|j1m1 ± 1j2m2〉

+
√

(j2(j2 + 1)−m2(m2 ± 1))|j1m1j2m2 ± 1〉 (2)

On taking conjugate of Eq.(2) we get

〈j1m1j2m2|(J (1)
∓ + J

(2)
∓ ) = 〈j1(m1 ± 1)j2m2|

√
(j1(j1 + 1)− (m1 ± 1)

+〈j1m1j2(m2 ± 1)|
√
j2(j2 + 1)−m2(m2 ± 1)) (3)

which is a consequence of the angular momentum commutation relations. Considering the

matrix element

〈j1j2m1m2|J±|JM〉 = 〈j1j2m1m2|(J (1)
± + J

(2)
± )|JM〉 (4)

and using Eq.(1) and Eq.(3) we get two relations, one for J+ and√
J(J + 1)−M(M + 1)〈j1j2m1m2|J(M + 1)〉

= 〈j1j2m1 − 1m2|JM〉
√
j1(j1 + 1)−m1(m1 + 1)

+〈j1j2m1m2 − 1|JM〉
√
j2(j2 + 1)−m2(m2 + 1) (5)

and a second relation for J−√
J(J + 1)−M(M − 1)〈j1m1, j2m2|J(M − 1)〉

= 〈j1(m1 + 1)j2m2|JM〉
√
j1(j1 + 1)−m1(m1 − 1)

+〈j1m1, j2(m2 + 1)|JM〉
√
j2(j2 + 1)−m2(m2 − 1) (6)

We will make repeated use of the results Eq.(5),Eq.(6) given above. These equations can

be used successively with M = J, J − 1, . . . to compute the Clebsch Gordon coefficients.
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Restrictions on total JM values

The restrictions 1)−4), given above, on the allowed values of the total angular momentum

J will be derived by considering the matrix elements 〈j1j2m1m2|Jz|JM〉,〈j1j2m1m2|Jz|JM〉
and 〈j1j2m1m2|J±|JM〉 and by repeated use of (5) and (6)

Proof of M = m1 +m2 The first result is easy to prove. Since Jz = J
(1)
z + J

(2)
z , taking

the matrix element and using the properties

Jz|JM〉 = M~|JM〉 (7)

(J (1)
z + J (2)

z )|j1m1j2m2〉 = (m1 +m2)~|j1m1j2m2〉 (8)

we obtain

〈JM |(J (1)
z + J (2)

z − Jz)|j1m1j2m2〉 = 0 (9)

Therefore,

(m1 +m2 −M)〈JM |j1m1j2m2〉 = 0 (10)

Thus if M 6= m1 +m2, the Clebsch Gordon coefficient 〈JM |j1j2m1m2〉 has to be zero. In

other words, a nonzero value of 〈JM |j1j2m1m2〉 is possible only when

M = m1 +m2 (11)

Range of J values The results will be derived by considering the matrix elements

〈j1m1j2m2|Jz|JM〉 and

〈j1m1, j2m2|J±|JM〉.
Note that there is one relation between three the variables m1m2,M . Hence we need

the Clebsch Gordon coefficients for all allowed values of M and m1which vary in the range

M = −J, · · · , J and m1 = −j1, · · · , j1. We will now argue that these can all be related to

single coefficient 〈JJ |; j1J − j1〉. They can all be related to 〈j1j1, j2(J − j1)|JJ〉

Use (5) with M = J,m1 = j1

0× 〈j1m1, j − 2m2|J(M + 1)〉

= 〈j1(j1 − 1), j2m2|JJ〉
√

2j1

+〈j1j1, j2(m2 − 1)|JM〉
√
j2(j2 + 1)−m2(m2 − 1) (12)

Use (6) with M = J,m1 = ji
√

2J〈; j1m2|J(J − 1)〉

= 〈j1(j1 + 1), j2m2|JM〉 × 0

+〈j1j1, j2(m2 + 1)|JM〉
√
j2(j2 + 1)−m2(m2 + 1) (13)

Use (5) with M = J − 1,m1 = j1
√

2J〈; j1m2|JJ〉

= 〈; (j1 − 1)m2|J(J − 1)〉
√

2j1

+〈j1j1, j2(m2 − 1)|J(J − 1)〉
√

(j2(j2 + 1)−m2(m2 − 1) (14)
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Use (6) with M = J,m1 = j1 − 1

√
2J〈j1(j1 − 1), j2m2|J(J − 1)〉

= 〈j1j1, j2m2|JJ〉 × 0

+〈j1(j1 − 1), j2m2 + 1|JM〉
√
j2(j2 + 1)−m2(m2 + 1) (15)

Use (6) with M = J − 1,m1 = j1√
(J +M)(J −M + 1)〈j1j2m1m2|J(J − 2)〉

= 〈j1(j1 + 1), j2m2|JM〉
√
j1(j1 + 1)−m1(m1 + 1)

+〈j1j2j1(m2 + 1)|JM〉
√

(j2(j2 + 1)−m2(m2 + 1) (16)

We can continue in this fashion. We see that the Clebsch Gordon coefficient for different

pairs of values of M,m1 are known in terms of a single coefficient for M = J,m1 = ji as

follows

Equation New Coefficient Known in terms of

Eq.(12) m1 = j1 − 1,M = J m1 = j1,M = J

Eq.(13) m1 = j1,M = J − 1 m1 = j1,M = J

Eq.(14) m1 = j1 − 1,M = J − 1 j1,M = J − 1 and m1 = j1 − 1,M = J

Eq.(15) m1 = j1 − 1,M = J − 1 m1 = j1 − 1,M = J

Eq.(16) m1 = j1,M = J − 2 m = j1,M = J − 1

Next we consider the state |j1m1, j2m2〉 with m1 = j1 and m2 = j2. In this state M

has the highest value j1 + j2.

All these coefficients can be fixed in terms of a single coefficient 〈j1j1, j2m2 = (j −
j1)|JM〉 which is non zero only if j − j1 lies in between −j1 and j1. Thus

− j2 ≤ j − j1 ≤ j2 (17)

By repeating the above steps with j1 and j2 interchanged we would get

− j1 ≤ j − j2 ≤ j1 (18)

These two conditions, Eq.(17) and Eq.(18), are equivalent to the requirement J > |j1−j2|.
Since maximum possible value of M = m1 +m2 is j1 + j2 we must have J < j1 + j2. Thus
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the total angular momentum is constrained to lie between |j1− j2| and j1 + j2. The three

numbers J, j1, j2 should be such that they satisfy triangle inequalities

|j1 − j2| ≤ J ≤ j1 + j2. (19)

It should be remarked that Eq.(17)-Eq.(19), written as conditions on j1 and j2, are equiv-

alent to each of the following two alternate forms

|J − j2| ≤ j1 ≤ J + j2 and |J − j1| ≤ j2 ≤ J + j1. (20)

J takes values in steps of 1 The range of J , the total angular momentum value, has

been determined; the minimum value being |j1 − j2| and the maximum value is (j1 + j2).

Are all integral, and half integral values, allowed in this range allowed ? We must fix

which values of J are allowed and which ones are not allowed?

The state |j1j2m1m2〉, when both m1 and m2 have their maximum allowed values j1

and j2, the value of M = m1 + m2 is maximum and equal to j1 + j2. There is only one

such state and this must correspond to J = j1 + j2.

|J = (j1 + j2),M = (j1 + j2)〉 = |j1m1 = j1, j2m2 = j2〉 (21)

The next value of M = j1 + j2 − 1 corresponds to two linearly independent states corre-

sponding to

(a) m1 = j1 − 1,m2 = j2, and

(b) m1 = j1,m2 = j2 − 1

What are the corresponding J values? One combination of these two states must be the

M = j1 + j2 − 1 partner of the state Eq.(21); and the other linear combination can only

correspond to the next value J = j1 + j2 − 1.Continuing in this way, we now consider

M = j1 + j2 − 2 which will come from three sets of m1,m2 values,i.e.,

(a) m1 = j1 − 2,m2 = j2

(b) m1 = j1 − 1,m2 = j2 − 1, and,

(c) m1 = j1,m2 = j2 − 2

Of the three states |j1m1, j2m2〉 corresponding the above values two linear combinations

will correspond to the J values j1 + j2 already found; a third linear combination must

therefore correspond to the value J = j1 + j2 − 2. Proceeding in this fashion we see that

the successive J values differ by one. How are we sure that all the J values have been

correctly identified ?. We will now count the number of states in two different ways to

confirm the conclusion that J takes all the values in the allowed range from |j1 − j2| to

j1 + j2.
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Count in two ways to cross check Thus we have two set of orthonormal bases{
|j1m1, j2m2〉

∣∣∣m1 = −j1, · · · , j1,m2 = −j2, j2 · · ·
}

(22)

and {
|j1j2; JM〉

∣∣∣J = |j1 − j2|, · · · , j1 + j2,M = −J, · · · , J
}

(23)

It is easily seen that the total number of vectors in two bases are equal. The number

of elements in the set (22)) is (2j1 + 1)(2j2 + 1) and in the set (23) is also the same

j1+j2∑
J=|j1−j2|

(2J + 1) = (2j1 + 1)(2j2 + 1). (24)

The two bases in Eq.(22) and Eq.(23) are orthonormal and hence the transformation

connecting the two must be a unitary transformation and the Clebsch Gordon coefficients

must satisfy the relations∑
JM

〈j1j2;m1m2|j1j2JM〉〈JM |j1j2;m′1m′2〉 = δm1m′
1
δm2m′

2
(25)∑

m1,m2

〈JM |j1j2;m1m2〉〈j1j2;m1m2|j1j2J ′M ′〉 = δJJ ′δMM ′ (26)

These relations can also be seen as a consequence of the completeness formula such as∑
JM

|JM〉〈JM | = Î (27)

and a similar relation for the vectors |j1j2;m1m2〉.
The Clebsch Gordon coefficients for addition of angular momenta are tabulated. Two

such tables for j2 = 1
2 and j2 = 1 are given on the next page.
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