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§0.1 Spherically symmetric potentials
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We shall discuss energy eigenvalue problem in three dimensions for a spherically sym-
metric potential given. A spherically symmetric potential depends only on r and does not

depend on # and ¢. The Hamiltonian for such a system is

H= ﬁ + V(r) (1)

2m
For a spherically symmetric potential the Hamiltonian commutes with the angular
momentum operators L=rx p and the angular momentum components L,, L,, L. are
constants of motion and therefore H, E2,Lz form a commuting set of operators. It is
seen that the parity operators P commutes with all these operators and that the set of

operators

H,”L? L.and P

is a complete set of commuting operators. This means that EZ,LZ,P are constants
of motion and that the energy eigenfunctions can be selected to have definite values of
I_;Q, L,, P also. We shall see these features in the folowing specfic examples to be discussed

later.

e Lree Particle, V(r) = constant.

62

e Hydrogen atom, v(r) = ——
,

e Square well and other similar potentials.
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§0.2 Schrodinger Equation for Spherically Symmetric Potentials

The Schrodinger equation for a spherically symmetric potential is

v V()| o= B )

The Laplacian V? in spherical polar coordinates is given by

2 1O (p0) L o (. 0 1 &
v “ 2o\ or +r2sin980 sm@aa +r2sin298¢2 (3)

Therefore, Eq, takes the form

1 /0 ,0 1 9(. ,0 1 9
{7‘2 <87’T28r> * r2sinf 00 <81n980> * 2 sinQGW} v(r6,9) )
2
+ FE-VE)Ur0.¢) =0. ()
§0.3 Separation of Variables
Substitute
P(r,0,9) = R(r)Y (0, ) (6)

in Eq,({4) and divide by R(r)Y (6, ¢) to get

1 1<828R> 11 a( 8Y> 1 1 9% 2m

I et S - Y (unpdl A idad & 0 _
Ry 2\ ar )T v izsmaae 0% ) Ty manza oz T ETVID =0 (1)

Multiply by r? and rearrange to get

1 0 [ ,0R\ 2m s 1 {1 0 (. oY 1 9y
R(r)@r(r 87‘>+712(E Vi) = Y{Siﬂﬂ@@ (Sln980)+sin290¢2}_0 ®)

The left hand side of the above equation is a function of r alone and the right hand

side is a function of 8 and ¢ only. This is possible only when each side is a constant, say

A. Thus we get two ordinary differential equations

1 0 [ 40R 2m 2
— (r?= —(E — =
R(r) or <r 8r> + gz (B = V() =2 ©)
and
11 0 oY 1 %Y
: S 1
Y{sin&@@ (Sln989>+sin208¢2} A (10)

On rearranging Eq,@]) we get the radial Schrodinger equation

; (ﬂ%f) v (E V() - 32) R(r) =0 (11)
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and Eq,(10) can be rewritten as

1 0 /. 0Y 1 0%

is seen to be just the eigenvalue problem for angular momentum operator L2, The
variables 6 and ¢ can be separated in Eq, by writing

Y(0,¢) = Q(O)E(9),

resulting partial differential equation

1 1 0 opP 1 1 8P
{Psin989 <Sm 80>+Esin208¢>2} (13)
separates into two ordinary differential equations one of which is just the eigenvalue
equation for L.

For these equations physically acceptable solutions are known to exist only when A =
(l+1),m=4¢~0—-1,---,—¢ —1,—£. The solutions for Y are the spherical harmonics

Yo (0, 6).

§0.4 Summary of Results on Spherically Symmetric Potentials

The solutions of the Schrodinger equation

[—inv? - V(T)] Y =Ei (14)

for a spherically symmetric potential V' (r) are of the form

w(ﬁ@ﬂb) = Rf(r)}/ﬁm(97¢) (15)

where Ry(r) is called the radial wave function and satisfies the radial Schrodinger

equation

9 (208 +2L§ Efv(r)fi2 R(r)=0 (16)
o (75r) + 3 (F-v0-3)

The angular part of the wave function Yy, (6, ¢) is simultaneous eigenfunction of L2
and L, with eigenvalues /(¢ + 1)h? and mh, respectively. Note that only ¢ appears in the

radial equation and that it does not contain m. Hence

1. The energy eigenvalues are independent of m; there are 2(¢£+ 1) linearly independent
solutions for each fixed ¢ all having the same energy. Thus they are (2¢ 4 1) fold

degenerate.

2. The energy eigenvalues depend on ¢ and increase with increasing /.
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For a spherically symmetric potential we need to concentrate only on the radial equa-
tion. If we substitute R(r) = —x(r), the radial equation takes the form of one dimensional
r

Schrodinger equation. Using

dR(r) 1
) L+ (17)
dR
2O )+ ) (18)
10 (,0R\ 1 ox 0?x X
r2 or (r 8r> o2 <_ or or?2  or (19)
10%x
r or? (20)
Eq, takes the form
K2 d?y 00+ 1)
“omar (V“) + zmz> X = Bx (21)

This equation looks like one dimensional Schrodinger equation with potential V' (r)

replaced with

00+ 1)n?

Vir) + 2mr2

= Vo (r)- (22)

The second term in Veﬂr(r) is just the centrifugal potential term which also appears
in the classical equation for the radial motion. The radial Schrodinger equation Eq, ([21])
can be analyzed in the same manner as one dimensional problems. There is one difference

however that we must demand

x(r) =0 as r—0, (23)

so that the radial wave function R(r) = x(r) does not become singular at » = 0. In

addition to above boundary condition on the solutions, another difference between Eq, ([21])
and a one dimensional problem is that the variable r takes values in the interval (0, co)

instead of (—o0, 00).
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