Notes for Lectures on Quantum Mechanics * Particle in a Rigid Spherical Box

A. K. Kapoor http://0space.org/users/kapoor akkapoor@cmi.ac.in; akkhcu@gmail.com

The potential for a rigid spherical box can be written as

$$V(r) = \begin{cases} 0, & 0 < r < a \\ \infty, & r > a \end{cases}.$$
 (1)

The problem is separable in spherical polar coordinates and form of the full wave function is

$$\psi(r,\theta,\phi) = R(r)Y_{\ell m}(\theta,\phi).$$
(2)

We need to consider solutions of the radial equation only. No solution can be found for E < 0, therefore we consider E > 0. For r > a the potential is infinite and hence the radial wave function must be zero, Next we consider r < a, where the potential is zero. The radial equation assumes the form

$$-\frac{1}{r^2}\frac{d}{dr}r^2\frac{dR(r)}{dr} + \frac{\ell(\ell+1)\hbar^2}{2mr^2}R(r) - ER(r) = 0.$$
(3)

The most general solution of this equation is given in terms of spherical Bessel functions j_{ℓ}, n_{ℓ} and we write it as

$$R_{E\ell(r)} = Aj_{\ell}(kr) + Bn_{\ell}(kr), \qquad k^2 = \frac{2mE}{\hbar^2}.$$
 (4)

Recall that near r = 0, $n_{\ell}(r) \sim r^{-\ell-1}$ and blows up as $r \to 0$. Therefore we must set B = 0 if the solution is to remain finite at r = 0. Thus we get

$$R_{\ell}(r) = \begin{cases} Aj_{\ell}(kr), & 0 < r < a \\ 0 & r > a \end{cases}.$$
 (5)

Next we must demand that the radial wave function R(r) must be continuous at r = a. Remember that there is no corresponding requirement on the derivative for this case of infinite jump in the potential at r = a The continuity requirement of $R_{E\ell}(r)$ becomes

$$j_\ell(ka) = 0. \tag{6}$$

The solutions of the above equation determine allowed values of k and hence allowed bound state energies.

^{*} qm-lec-16007 Updated:Oct 19, 2021; Ver 0.x

Energy levels and degeneracy

To get all the solutions, one proceeds as follows. First set $\ell = 0$ and locate the roots of $j_0(ka) = 0$. We call the roots as $\rho_{0n}, n = 0, 1, 2, \ldots$ and the corresponding energies are given by $E = \frac{\hbar^2 \rho_{0n}^2}{2ma^2}$. Here *n* denotes the number of nodes of the radial wave function for $\ell = 0$.

Next, we set $\ell = 1$ and find the roots of $j_1(kr) = 0$, calling these roots as $\rho_{1n}, n = 0, 1, 2, \ldots$ the $\ell = 1$ energy levels are given by $E = \frac{\hbar^2 \rho_{1n}^2}{2ma^2}$. This process is to be repeated for all values of angular momentum ℓ and the number of bound states for each ℓ turns out to be infinite. The states of definite energy depend on quantum numbers $n\ell m$ and the energy does not depend on magnetic quantum number m. Therefore for a given azimuthal quantum number ℓ we have $(2\ell+1)$ wave functions $N_{n\ell}R_{n\ell}(r/\rho_{n\ell})Y_{\ell m}(\theta,\phi), (m = -\ell, -\ell+1, \cdots, \ell)$ and the energy levels $E_{n\ell}$ are $(2\ell+1)$ fold degenerate. The energy increases with ℓ and also with increasing n. Thus schematic energy level diagram would appear as follows.

			n' - 3
		$\underline{n'=3}$	<u> 11 – 0</u>
n'=3			n' = 2
m' = 0		$\underline{n'=2}$	
n = 2			n' = 1
n' = 1		$\underline{n'=1}$	
70 - 1			$\underline{n'=0}$
n' = 0		$\underline{n'=0}$	
	l = 0	l = 1	l=2
	nondegenerate	m = -1, 0, 1	m = -2, -1, 0, 1, 2
		3 fold degenerate	5 fold degenerate