Notes for Lectures on Quantum Mechanics * Energy Levels in Spherically Symmetric Potentials Accidental Degeneracy

A. K. Kapoor http://0space.org/users/kapoor akkapoor@cmi.ac.in; akkhcu@gmail.com

Contents

1	General Properties of Bound State Spectra	1
2	Bound state spectrum	2
3	Coulomb problem spectrum	3
4	Accidental degeneracy	4

1 General Properties of Bound State Spectra

A potential is spherically symmetric if in polar variables it depends only on r and not on θ and ϕ coordinates. We shall now discuss general properties of solution of 3-dimensional Schrödinger equation $H\psi = E\psi$ where

$$H = \frac{\vec{p}^2}{2m} + V(r)$$

and the potential V(r) is spherically symmetric.

Conserved quantities

We note that all the three components of \vec{L} commute with Hamiltonian

$$[\vec{L},H] = 0$$

hence

$$[\vec{L}^2, H] = 0$$

The parity operator ${\mathcal P}$

$$\mathscr{P}\psi(\vec{r}) = \psi(-\vec{r})$$

also commutes with L^2L_z and H, operators. Therefore, the eigen functions of H will also be eigen functions of L^2, L_z and parity and each level can be assigned a definite value of l, m and parity. For a state with definite value of l, the value of parity is $\equiv (-1)^l$. In this case L^2, L_z and H form a complete commuting set.

^{*} qm-lec-16001 Updated:Oct 19, 2021; Ver 0.x

$(2\ell+1)$ degeneracy

We use the notation $|El, m\rangle$ to denote the simultaneous eigenvector of H, L^2 and L_z

$$H|E,lm\rangle = E|E,lm\rangle \tag{1}$$

$$L^{2}|E,lm\rangle = l(l+1)\hbar^{2}|E,lm\rangle$$
(2)

and
$$L_z|E, lm\rangle = m\hbar|E, lm\rangle$$
 (3)

$$\mathscr{P}|E,lm\rangle = (-1)^l|E,lm\rangle \tag{4}$$

Applying L_{-} on $|El, m\rangle$ several times leads successively to

$$|El, m-1 \rangle$$
, $|E, l, m-2 \rangle$ \cdots $|El, -l \rangle$ (5)

(6)

and the action of L_+ on $|E, lm\rangle$ leads to the states

$$|El, m+1\rangle$$
, $|E, l, m+2\rangle$ \cdots $|El, l\rangle$ (7)

All these states will have the same value of energy. This statement can be proved by making use of the fact that H commutes with L_{\pm} and that action of L_+ (or L_-) on $|Elm\rangle$ leads to states $|El, m + 1\rangle$ (or $|El, m - 1\rangle$). Thus we see that the bound state energy eigenvalues of a spherically symmetric potential problem with have (2l + 1) fold degeneracy. (What about the continuous energy eigenvalues?)

Radial wave function

The Schrödinger equation for a spherically symmetric potential can be solved by separation of variables in polar coordinates. The angular part of the wave functions turns out to be a spherical harmonic $Y_{lm}(\theta, \phi)$ and the wave function has the form

$$\psi(r,\theta,\phi) = R(r)Y_{lm}(\theta,\phi)$$

where R(r) is radial wave function satisfying the Schrödinger equation

$$-\frac{\hbar^2}{2m}\frac{1}{r^2}\frac{d}{dr}r^2\frac{d}{dr}R(r) + \left(V(r) + \frac{l(l+1)\hbar^2}{2mr^2}\right)R(r) = ER(r) \quad .$$

If we define $\chi(r) = rR(r)$, the function χ satisfies the equation

$$-\frac{\hbar^2}{2m}\frac{d^2\chi}{dr^2} + \left(V(r) + \frac{l(l+1)\hbar^2}{2mr^2} - E\right)\chi = 0 \ .$$

with boundary condition $\chi(r)|_{r=o} = 0$, otherwise R(r), the radial wave function will tend to ∞ as $r \to \infty$.

2 Bound state spectrum

The equation for χ has the form of one dimensional Schrödinger equation. Let n' denote the number of zeros of the radial wave function, excluding r = 0 and at $r = \infty$. Then for a fixed value of l, the energy will increase with n', $n' = 0, 1, 2, \cdots$ will correspond to, for a fixed l, the 'ground' state, first excited state, the second

excited state etc. Because of the l dependence of the term $\frac{l(l+1)\hbar^2}{2mr^2}$ in the potential appearing in equation for $\chi(r)$, we expect that as l is changed, keeping the number of nodes to be the same, E would also change. Increasing l would lead to increase in E, when n' is kept fixed.

Thus the spectrum would appear as follows

3 Coulomb problem spectrum

For hydrogen atom the energy levels are given by

$$E = -\frac{Z^2 e^4 m}{2\hbar^2 (n'+l+1)^2}$$

The energy does not depend on n' and l separately but only on the combination n = (n' + l + 1). For a fixed n, l can have values $0, 1, \dots, n - 1$ (because $n' \ge 0$) and all these solutions correspond to the same energy eigenvalue. The energy level diagram of H-atom, therefore, appears as shown below.

	l = 0	l = 1	l=2	l = 3	l = 4
n = 7					
n = 6					
n = 5					
n = 4	n=4	n=4	n=4	n=4	n=4
				7 fold	9 fold
				degenerate	degenerate
n = 3	n=3	n=3	n=3		
			5 fold		
			degenerate		
n=2	n=2	n=2			
		3 fold			
		degenerate			
n = 1	n=1				
	non-degenerate				

Putting all the levels which have the same energy together we get the following schematic representation of energy levels of H atom. This table also shows that the

allowed values of l for each n, and number of m values for each level. The number of total m values, with the same energy, is n^2 and the degeneracy, after taking spin into account, becomes $2n^2$.

		l values	number of m values	degeneracy
		$0, 1,n - 1$ n^2		$2n^2$
n = 4 $n = 3$ $n = 2$		l = 0, 1, 2, 3 l = 0, 1, 2 l = 0, 1	$\sum_{l=1}^{l} (2l+1) = 16$ $\sum_{l=1}^{l} 2(l+1) = 9$ $\sum_{l=1}^{l} (2l+1) = 4$	$2 \times 16 = 32$ $2 \times 9 = 18$ $2 \times 4 = 8$
n = 1	degen=2	l = 0	$\sum (2l+1) = 1$	$2 \times 1 = 2$

4 Accidental degeneracy

Comparing the hydrogen atom levels with those of a general spherically symmetric potential, we find that energies for states with several different values of $l (= 0, 1, 2 \dots n - 1)$ are the same. For a general spherically symmetric potential different combinations of n, l values correspond to different bound state energies, and are (2l + 1) fold degenerate. Thus there is an extra degeneracy is present for H atom beyond the expected (2l + 1) fold degeneracy this phenomenon present in the case of hydrogen atom is known as *accidental degeneracy*. Another well known case of accidental degeneracy is that of isotropic harmonic oscillator ($V(r) = \frac{1}{2}kr^2$) in three dimensions.

Remarks

- [1] It must be emphasized that the accidental degeneracy is due to the special symmetry of the Coulomb problem.
- [2] Any slight deviation of the potential from $\frac{1}{r}$ will result in splitting of energy levels with different values of l.
- [3] It is known that the accidental degeneracy is present whenever the Schrödinger equation $H\psi = E\psi$ can be separated into ordinary differential equations in more than one set of coordinate system.
 - ${\cal H}$ atom Separation of variables for the Coulomb problem is possible in
 - (a) spherical polar coordinates r, θ, ϕ
 - (b) parabolic coordinates ξ, η, ϕ defined by

$$\xi = r - z = r(1 - \cos\theta) \quad \eta = r + z = r(1 + \cos\theta) \quad \phi = \phi \tag{8}$$

[4] The isotropic oscillator also exhibits accidental degeneracy. For isotropic harmonic oscillator, $V(r) = \frac{1}{2}kr^2$, the Schrodinger equation can be separated in two set of variables, Cartesian and spherical polar coordinates.