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1 Radial equation

The classical Hamiltonian for an electron and a nucleus of charge Ze is

H =
p21
2m1

+
p22
2m2

− Ze2

|~r1 − ~r2|
(1)

where m1,m2 are the masses of the electron and the nucleus and ~r1, ~r2 denote their

respective positions.The case Z = 1 corresponds to H atom, Z = 2 singly ionized

He atom and Z = 3 doubly ionized Li atom and so on. The Schrödinger equation

for the electron nucleus system takes the form

− ~
2

2m1

( ∂2

∂x21
+

∂2

∂y21
+

∂2

∂z21

)

Ψ− ~
2

2m2

( ∂2

∂x22
+

∂2

∂y22
+

∂2

∂z22

)

Ψ− Ze2

|~r1 − ~r2|
Ψ = EΨ. (2)

Since the potential depends on relative position only, the two body problem can

be reduced to an equivalent one body problem with reduced mass by changing the

frame of reference to the centre of mass frame. We introduce the centre of mass and

relative coordinates defined by

~R =
m1~r1 +m2~r2
m1 +m2

, ~r = ~r1 − ~r2. (3)

The centre of mass will move like a free particle, and the relative motion reduces

to that of a particle of reduced mass µ = m1m2

m1+m2
. Therefore, it is not surprising that

the separation of variables in the Schrödinger equation can be achieved by changing

* qm-lec-16005 Updated:; Ver 0.x

1

http://0space.org/users/kapoor
akkapoor@cmi.ac.in
 akkhcu@gmail.com 


to these new variables ~r and ~R. In terms of these variables the Schrödinger equation

takes the form

− ~
2

2M

( ∂2

∂X2
+

∂2

∂Y 2
+

∂2

∂Z2

)

Ψ(~R,~r) (4)

− ~
2

2µ

( ∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)

Ψ(~R,~r)− Ze2

r
Ψ(~R,~r) = EΨ(~R,~r). (5)

Here M = m1 +m2 is the total mass, µ is the reduced mass. If we now write the

full wave function Ψ(~R,~r) as

Ψ(~r,~r) = U(~R)u(~r) (6)

and substitute it in Eq.(5), the variables ~R and ~r get separated and we would get

the following differential equations for U(~R) and u(~r)

− ~
2

2M

( ∂2

∂X2
+

∂2

∂Y 2
+

∂2

∂Z2

)

U(~R) = EcmU(~R) (7)

− ~
2

2µ

( ∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)

u(~r)− Ze2

r
u(~r) = Eu(~r). (8)

Ecm, E are constants appearing from the process of separation of variables so that

E+Ecm = E. The equation (7) is a free particle equation for the centre of mass and

Eq.(8) describes the relative motion of the electron and the nucleus.

The Schrödinger equation (8) can now be solved by separation of variables in

spherical polar coordinates r, θ, φ. The angular part of the wave function is given

by the spherical harmonics Yℓ2m(θ, φ) and therefore we write

u(~r) = R(r)Yℓm(θ, φ). (9)

The radial equation for R(r) takes the form

1

r2
d

dr

(

r2
dR

dr

)

+
2µE

~2

(

E +
Ze2

r
− ℓ(ℓ+ 1)

~2

)

R(r) = 0, (10)

d2R(r)

dr2
+

2

r

dR(r)

dr
+

2µE

~2

(

E +
Ze2

r
− ℓ(ℓ+ 1)

~2

)

R(r) = 0. (11)

The radial equation involves effective potential

Veff(r) = −Ze2

r
+

ℓ(ℓ+ 1)~2

2µr2
. (12)

Remembering that ℓ(ℓ + 1)~2 is the eigenvalue of the square of orbital angular

momentum, L2, the second term is seen to be the centrifugal barrier term that

appears in classical mechanics. The effective potentail goes to zero for large r.

Hence for E > 0 the energy eigenvalues will be continuous and the bound states

exist only for negative E, so we write E = −|E|. It is convenient to work with

dimensionless variables ρ and λ defined by

ρ = αr, α2 =
8µ|E|
~2

(13)

λ =
2µZe2

α~2
=

Ze2

~

√

µ

2|E| . (14)
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The equation for radial wave function written in terms of ρ takes the form

d2R

dρ2
+

2

ρ

dR

dρ
+

(λ

ρ
− 1

4
− ℓ(ℓ+ 1)

ρ2

)

R = 0. (15)

The above equation (15) can be transformed into a form similar to one dimensional

Schrödinger equation by introducing χ(ρ) = ρR(ρ) which gives the following equa-

tion for χ(ρ)
d2χ

dρ2
+

(λ

ρ
− 1

4
− ℓ(ℓ+ 1)

ρ2

)

χ(ρ) = 0. (16)

2 Large ρ behaviour

The behaviour of the radial wave function for large ρ can be easily found by taking

large ρ limit of Eq.(16). Neglecting the terms λ
ρ and ℓ(ℓ+1)

ρ2 compared to 1/4 we get

d2χ(ρ)

dρ2
− 1

4
χ(ρ) = 0. (17)

showing that the wave function behaves like exp(±ρ/2) for large ρ. The wave func-

tion must be bounded everywhere including at infinity, so we must have χ(ρ) ≈ e−ρ/2.

This suggests that we write R = e−ρ/2F (ρ), and solve for F (ρ). The equation for

F (ρ) turns out to be

d2F (ρ)

dρ2
+

(

2

ρ
− 1

)

+

[

λ− 1

ρ
− ℓ(ℓ+ 1

ρ2

]

(18)

3 Solution by Frobenius method

We now find solution of the differential equation for F (ρ) by the method of series

solution. Assuming the form

F (ρ) =
∑

m=0

amρc+m, , (19)

substituting in Eq.(18), and equating coefficients of lowest power of ρ to zero we get

c(c + 1)− ℓ(ℓ+ 1) = 0 =⇒ c = −ℓ− 1, ℓ (20)

Since ℓ > 0, the value c = −ℓ(ℓ+ 1) give solution diverging at ρ = 0. Therefore we

choose c = ℓ = and the recurrence relation for the coefficients am turns out to be

am+1 =
(m+ ℓ+ 1− λ)

(m+ 1)(m+ 2ℓ+ 2)
am. (21)

The ratio of coefficients for large m

am+1

am
∼ 1

m
(22)

coincides with the corresponding value for the series ρk exp(ρ). Hence if the series

does not terminate, the solution F (ρ) gives the radial wave function diverging like

ρk exp(ρ/2) for large ρ. This is unacceptable and hence the series must terminate.
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This happens if all terms vanish after some n′
i.e. am = 0 for all m > n′. For this

to happen we must have an′+1 = 0. Hence from Eq.(21) we get

λ = n′ + ℓ+ 1. (23)

The energy is then given by

En = −|En| = −Z2e4µ

2~2n2
=

Zα2

2n2
(µc2) . (24)

where c is velocity of light and α = e2

~c ≈ 1
137 is the fine structure constant.

4 Properties of H atom wave functions

The final expressions for wave functions for hydrogen like problems is given by

unℓm(r, θ, φ) = Rnℓ(r)Yℓm(θ, φ) (25)

Rnℓ(r) = Nnℓ ρ
ℓ L2ℓ+1

n+ℓ (ρ)e
−ρ/2 (26)

Nnℓ =

√

(

2Z

na0

)3 (n− ℓ− 1)!

2n
(

(n+ ℓ)!
) (27)

with

ρ =
( 2Z

na0

)

r, a0 =
~
2

µe2
. (28)

and n is the principle quantum number. Here Lp
q(ρ) are associated Laguerre poly-

nomials and a0 is the radius of first Bohr orbit of the the electron in hydrogen atom.

The energy levels are given by

En = −Z2e4µ

2~2n2
. (29)

The first few radial wave functions are

R10 = (Z/2a0)
3

22 exp(−Zr/2a0)) (30)

R20(r) = (Z/2a0)
3

2 (2− Zr/a0) exp(−Zr/2a0)) (31)

R20(r) = (Z/2a0)
3

2 (Zr/
√
3 a0) exp(−Zr/2a0)) (32)

A comment on hydrogen atom energy levels Finally we wish to remind you

that the non-relativistic result −R/n2 for the energy levels of H-atom is not the end

of story for H-atom levels. Precision experiments show that each level is not a single

level. To understand the experimental facts we must take into account of relativistic

effects using Dirac theory of electron

Dirac Theory ր Spin orbit coupling ց Fine Structure
ց Relativistic variation of mass ր

Also a hyperfine structure, seen in the energy levels, requires a treatment of the

spin-spin interaction of electron with the nucleus and an explanation of a tiny ‘Lamb

shift’ requires use of quantum field theory.

Hyperfine structure → Effect of Nuclear Spin
Lamb shift → Quantum field Theory, Vacuum Polarization Effect
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