Notes for Lectures on Quantum Mechanics * Free Particle Solution in Polar Coordinates

A. K. Kapoor <http://0space.org/users/kapoor> [akkapoor@cmi.ac.in;](akkapoor@cmi.ac.in) akkhcu@gmail.com

The radial equation for a free particle, $V(r) = 0$, for all r is

$$
\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial R}{\partial r} \right) + \left(k^2 - \frac{\ell(\ell+1)}{r^2} \right) R = 0, \tag{1}
$$

where $k^2 = \frac{2mE}{\hbar^2}$ $\frac{1}{h^2}$. The solution of the radial equation has the most general form

$$
R(r) = Aj_{\ell}(kr) + Bn_{\ell}(kr)
$$
\n(2)

but we must set $B = 0$ because $n_{\ell}(kr) \rightarrow \infty$ as $r \rightarrow 0$. Hence we get

$$
R_{\ell}(r) = Aj_{\ell}(kr)
$$
\n(3)

and the full free particle wave function is

$$
\Psi(r,\theta,\phi) = Nj_{\ell}(kr)Y_{\ell m}(\theta,\phi)
$$
\n(4)

For a given value of energy E, ℓ can take all values $0, 1, 2, \ldots$ and m has $(2\ell + 1)$ values from $-\ell$ to ℓ . Therefore, for every energy value $E > 0$ there are infinite number of solutions. If we take linear combinations of solutions with fixed energy E we get most general form of the solution for a given energy as

$$
\Phi(\vec{r}) = \sum C_{\ell m} j_{\ell}(kr) Y_{\ell m}(\theta, \phi).
$$
\n(5)

In Cartesian coordinates the free particle solutions for energy E are plane waves $\exp(i\vec{k}\cdot\vec{r})$. Thus it is possible to write each of these two type of solutions as a linear combination of the other type. In particular we have

$$
\exp(\vec{k} \cdot \vec{r}) = \sum C_{\ell m} j_{\ell}(kr) Y_{\ell m}(\theta, \phi)
$$
\n(6)

As a particular case of this equation, when k is along the z axis and $\vec{k} \cdot \vec{r} = kz$, we have the expansion of plane waves

$$
\exp(ikz) = \sum_{0}^{\infty} (2\ell + 1)i^{\ell} j_{\ell}(kr) P_{\ell}(\cos \theta)
$$
\n(7)

Note that only $m = 0$ terms contribute in the above equation.

 $*\overline{\text{qm-lec-16004}}$ Updated:; Ver 0.x