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We shall discuss energy eigenvalue problem in three dimensions for a spherically

symmetric potential given. A spherically symmetric potential depends only on r

and does not depend on θ and φ. The Hamiltonian for such a system is

H =
p2

2m
+ V (r) (1)

For a spherically symmetric potential the Hamiltonian commutes with the an-

gular momentum operators ~L = ~r × ~p and the angular momentum components

Lx, Ly, Lz are constants of motion and therefore H, ~L2, Lz form a commuting set of

operators. It is seen that the parity operators P commutes with all these operators

and that the set of operators

H, ”~L2, Lzand P

is a complete set of commuting operators. This means that ~L2, Lz, P are con-

stants of motion and that the energy eigenfunctions can be selected to have definite

values of ~L2, Lz, P also. We shall see these features in the folowing specfic examples

to be discussed later.

� Free Particle, V (r) = constant.

� Hydrogen atom, v(r) = −
e2

r

� Square well and other similar potentials.
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1 Schrodinger Equation for Spherically Symmetric Potentials

The Schrodinger equation for a spherically symmetric potential is

[

−
~
2

2m
∇

2 + V (r)

]

ψ = Eψ (2)

The Laplacian ∇
2 in spherical polar coordinates is given by

∇
2 =

1

r2
∂

∂r

(

r2
∂

∂r

)

+
1

r2 sin θ

∂

∂θ

(

sin θ
∂

∂θ

)

+
1

r2 sin2 θ

∂2

∂φ2
(3)

Therefore, Eq,(2) takes the form

{

1

r2

(

∂

∂r
r2
∂

∂r

)

+
1

r2 sin θ

∂

∂θ

(

sin θ
∂

∂θ

)

+
1

r2 sin2 θ

∂2

∂φ2

}

ψ(r, θ, φ) (4)

+
2m

~2
(E − V (r))ψ(r, θ, φ) = 0. (5)

2 Separation of Variables

Substitute

ψ(r, θ, φ) = R(r)Y (θ, φ) (6)

in Eq,(4) and divide by R(r)Y (θ, φ) to get

1

R(r)

1

r2

(

∂

∂r
r2
∂R

∂r

)

+
1

Y

1

r2 sin θ

∂

∂θ

(

sin θ
∂Y

∂θ

)

+
1

Y

1

r2 sin2 θ

∂2Y

∂φ2
+
2m

~2
(E−V (r)) = 0

(7)

Multiply by r2 and rearrange to get

1

R(r)

∂

∂r

(

r2
∂R

∂r

)

+
2m

~2
(E−V (r))r2 = −

1

Y

{

1

sin θ

∂

∂θ

(

sin θ
∂Y

∂θ

)

+
1

sin2 θ

∂2Y

∂φ2

}

= 0

(8)

The left hand side of the above equation is a function of r alone and the right

hand side is a function of θ and φ only. This is possible only when each side is a

constant, say λ. Thus we get two ordinary differential equations

1

R(r)

∂

∂r

(

r2
∂R

∂r

)

+
2m

~2
(E − V (r))r2 = λ (9)

and

1

Y

{

1

sin θ

∂

∂θ

(

sin θ
∂Y

∂θ

)

+
1

sin2 θ

∂2Y

∂φ2

}

= −λ (10)

On rearranging Eq,(9) we get the radial Schrodinger equation

∂

∂r

(

r2
∂R

∂r

)

+
2m

~2

(

E − V (r)−
λ

r2

)

R(r) = 0 (11)

and Eq,(10) can be rewritten as
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−

{

1

sin θ

∂

∂θ

(

sin θ
∂Y

∂θ

)

+
1

sin2 θ

∂2Y

∂φ2

}

= λY (θ, φ) (12)

is seen to be just the eigenvalue problem for angular momentum operator ~L2.

The variables θ and φ can be separated in Eq,(12) by writing

Y (θ, φ) = Q(θ)E(φ),

resulting partial differential equation

{

1

P

1

sin θ

∂

∂θ

(

sin θ
∂P

∂θ

)

+
1

E

1

sin2 θ

∂2P

∂φ2

}

= λ (13)

separates into two ordinary differential equations one of which is just the eigen-

value equation for Lz.

For these equations physically acceptable solutions are known to exist only when

λ = ℓ(ℓ + 1),m = ℓ, ℓ − 1, · · · ,−ℓ − 1,−ℓ. The solutions for Y are the spherical

harmonics Yℓm(θ, φ).

3 Summary of Results on Spherically Symmetric Potentials

The solutions of the Schrodinger equation

[

−
~
2

2m
∇

2 + V (r)

]

ψ = Eψ (14)

for a spherically symmetric potential V (r) are of the form

ψ(r, θ, φ) = Rℓ(r)Yℓm(θ, φ) (15)

where Rℓ(r) is called the radial wave function and satisfies the radial Schrodinger

equation

∂

∂r

(

r2
∂R

∂r

)

+
2m

~2

(

E − V (r)−
λ

r2

)

R(r) = 0 (16)

The angular part of the wave function Yℓm(θ, φ) is simultaneous eigenfunction

of ~L2 and Lz with eigenvalues ℓ(ℓ + 1)~2 and m~, respectively. Note that only ℓ

appears in the radial equation and that it does not contain m. Hence

1. The energy eigenvalues are independent of m; there are 2(ℓ+1) linearly inde-

pendent solutions for each fixed ℓ all having the same energy. Thus they are

(2ℓ+ 1) fold degenerate.

2. The energy eigenvalues depend on ℓ and increase with increasing ℓ.

For a spherically symmetric potential we need to concentrate only on the radial

equation. If we substitute R(r) =
1

r
χ(r), the radial equation takes the form of one

dimensional Schrodinger equation. Using
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dR(r)

dr
= −

1

r2
χ(r) +

1

r
χ(r) (17)

r2
dR(r)

dr
= −χ(r) + rχ(r) (18)

1

r2
∂

∂r

(

r2
∂R

∂r

)

=
1

r2

(

−
∂χ

∂r
+ r

∂2χ

∂r2
+
∂χ

∂r

)

(19)

=
1

r

∂2χ

∂r2
(20)

Eq,(16) takes the form

−
~
2

2m

d2χ

dr2
+

(

V (r) +
ℓ(ℓ+ 1)~2

2mr2

)

χ = Eχ (21)

This equation looks like one dimensional Schrodinger equation with potential

V (r) replaced with

V (r) +
ℓ(ℓ+ 1)~2

2mr2
≡ Veff(r). (22)

The second term in Veff(r) is just the centrifugal potential term which also

appears in the classical equation for the radial motion. The radial Schrodinger

equation Eq,(21) can be analyzed in the same manner as one dimensional problems.

There is one difference however that we must demand

χ(r) → 0 as r → 0, (23)

so that the radial wave function R(r) =
χ(r)

r
does not become singular at r = 0.

In addition to above boundary condition on the solutions, another difference between

Eq,(21) and a one dimensional problem is that the variable r takes values in the

interval (0,∞) instead of (−∞,∞).
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