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The orbital angular momentum of a particle is given by ~L = ~r × ~p and the

components of the angular momentum operator in coordinate representation are

L̂x = −i~
(

ŷ
∂

∂z
− ẑ

∂

∂y

)

(1)

L̂y = −i~
(

ẑ
∂

∂x
− x̂

∂

∂z

)

(2)

L̂z = −i~
(

x̂
∂

∂y
− ŷ

∂

∂x

)

(3)

Here Â means operator corresponding to the dynamical variable A. In terms of

spherical polar coordinates these expressions take the form

L̂x = i~

(

sinφ
∂

∂θ
+ cot θ cosφ

∂

∂φ

)

(4)

L̂y = i~

(

− cosφ
∂

∂θ
+ cot θ sinφ

∂

∂φ

)

(5)

L̂z = i~
∂

∂φ
(6)

The operator ~L2 given by
~L2 = L̂2

x + L̂2

y + L̂2

z (7)

takes the form

~L2 = −~
2

[

1

sin θ

∂

∂θ

(

sin θ
∂

∂θ

)

+
1

sin2 θ

∂2

∂φ2

]

(8)
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The components of orbital angular momentum satisfy commutation relations

[Lx, Ly] = i~Lz; [Ly, Lz] = i~Lx; [Lz, Lx] = i~Ly;

1 Eigenvalues and Eigenvectors

These commutation relations of angular momentum imply that ~L2 commutes with

~n · L̂ for all numericaln̂. Hence we can find simultaneous eigenfunctions of ~L2 and a

component of ~L. along any direction ~n. Taking n̂ to be along z− axis the eigenvalue

equations

~L2Y (θ, φ) = λ~2Y (θ, φ) (9)

LzY (θ, φ) = µ~Y (θ, φ) (10)

become differential equations
[

1

sin θ

∂

∂θ

(

sin θ
∂

∂θ

)

+
1

sin2 θ

∂2

∂φ2

]

Y (θ, φ) + λY (θ, φ) = 0 (11)

and

− i
∂

∂φ
Y (θ, φ) = µY (θ, φ) (12)

We shall now show that acceptable solutions exist only for

λ = ℓ(ℓ+ 1); µ = m (13)

where ℓ can take only positive integral values 0, 1, 2, · · · and m must satisfy the

relation (−ℓ ≤ m ≤ ℓ), taking values in steps of 1:

m = ℓ, ℓ− 1, · · · ,−ℓ+ 1,−ℓ. (14)

There are (2ℓ+1) eigenvalues of Lz for a fixed ~L2 and the spherical harmonics Yℓmθ, φ

will be seen to be the corresponding eigenfunctions. These results on eigenvalues

and eigenfunctions of ~L2 and Lz will be proved by solving the differential equations

by the method of separation of variables.

2 Separation of Variables

To solve the differential equations we substitute

Y (θ, φ) = Q(θ)E(φ) (15)

in Eq.(11) and (12) and divide by Y (θ, φ) = Q(θ)E(φ). This gives

− i
dE(φ)

dφ
= µE(φ) (16)

Similarly, (11) gives
[

1

Q(θ)

1

sin θ

d

dθ

(

sin θ
d

dθ
Q(θ)

)

+
1

sin2 θ

1

E(φ)

d2E(φ)

dφ2

]

+ λ = 0 (17)

On using Eq.(16) in (17) we get

sin2 θ

{

1

Q(θ)

1

sin θ

d

dθ

(

sin θ
d

dθ
Q(θ)

)}

+ λ sin2 θ = − 1

E(φ)

d2E(φ)

dφ2
(18)
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While the left hand side of the above equation is a function of θ, the right hand

side is a function of φ alone. Hence each side must be a constant, from Eq.(16) this

constant is µ. Thus we get

1

sin θ

d

dθ

(

sin θ
d

dθ
Q(θ)

)

+
(

λ− µ2

sin2 θ

)

Q(θ) = 0 (19)

3 Solution of φ equation

General solution of Eq.(16) is

E(φ) =

{

A exp(i
√
µφ) +B exp(−i

√
µφ), if µ 6= 0

C +Dφ, if µ = 0
(20)

A wave function must be single valued function. For a fixed r, θ, φ the values of φ

and φ+ 2π correspond to the same point. Hence the solution should have the same

value for φ and φ+ 2π. Thus we demand that E(φ) must satisfy

E(φ+ 2π) = E(φ) (21)

for all φ. For µ = 0 this implies that D = 0.

Next, when µ 6= 0 we must have

A exp(i
√
µ(φ+2π))+B exp(−i

√
µ(φ+2π)) = A exp(i

√
µφ)+B exp(−i

√
µφ) (22)

or

A exp(i
√
µφ) exp(2πi) +B exp(−i

√
µφ) exp(2πi)) = A exp(i

√
µφ) +B exp(−i

√
µφ).

(23)

For µ 6= 0, the linear independence of the exp(±i
√
µφ) implies that the correspond-

ing coefficients must be separately equal implying that m is an integer. Thus the

solutions of Eq.(16) are

E(φ) = exp(imφ), m = 0,±1,±2, · · · (24)

4 Solution of θ equation

If we substitute w = cos θ in Eq.(19) takes the form

d

dw
(1− w2)

dP (w)

dw
+

(

λ− m2

1− w2

)

P (w) = 0 (25)

where we have introduced P (w) ≡ Q(cos θ) and have used

dP (w)

dθ
=

dP (w)

dw
· dw
dθ

= − sin θ
dP (w)

dw

The equation (25) is known as associated Legendre equation. This equation can

be solved by the method of series solution. Since (25) is a second order differential

equation, there are two linearly independent solutions of this equation. For general

values of λ both the solutions become infinite at w = ±1 corresponding to θ = 0, π

These solutions are therefore unacceptable. For special values λ = ℓ(ℓ + 1), where
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ℓ is a positive integer, and with |m| ≤ ℓ, one solution remains finite , but not the

other solution. Thus we fix

λ = ℓ(ℓ+ 1) |m| ≤ ℓ (26)

For the above choice, the non singular solution for P (w) is known as the associated

Legendre function and has the form

P ℓ
m(w) = (1− w2)|m|/2 d|m|

dw|m|
Pℓ(w) (27)

where Pℓ(w) is Legendre polynomial of degree ℓ.Thus the eigenfunctions of ~L2 and

Lz are the

Yℓm(θ, φ) = NP ℓ
m(cos θ)eimφ, m = ℓ, ℓ− 1, · · · , ℓ (28)

The normalization is fixed by demanding

∫

2π

0

dφ

∫ π

0

Y ∗
ℓm(θ, φ)Yℓm(θ, φ) sin θdθ = 1 (29)

The functions Yℓm(θ, φ) in Eq.(28) are known as spherical harmonics.
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