Optics Mechanics Analogy Road to Wave Mechanics

A.K.Kapoor

June 22, 2011

Abstract

We follow Fermi, "Lectures on Quantum Mechanics" to motivate Schrödinger equation.

Point Particle	Waves
Mass Point	Wave packet
Trajectory	Ray
Velocity, ϑ	Group Velocity, $\tilde{\vartheta}$
	Phase Velocity, (v)
Potential Energy $\vartheta(x)$	Refractive Index,
	Function of position $n(x)$
Energy E	Frequency ν
	Dispersive medium, $n(,\nu,x), v(\nu,x)$

Manupertuis Principle: Fermat Principle:

$$\int \sqrt{E - \vartheta(x)} \, dx = \min \qquad \int \frac{ds}{v(\nu, x)} = \min$$

Remark Note that, for a particle, $\int \sqrt{E - V(x)} dx = \min$, means $\int p dx = \min$ which, for E = const, implies $\int (p dx - H dt) = \min$.

Particles have dual nature, therefore consistency requires that both Maupertuis and Fermat principles should give the same answer. Therefore, we must have

$$\frac{1}{v(\nu,x)} = f(\nu)\sqrt{E - V(x)} \tag{1}$$

1

Velocity of a point mass is

$$v = \frac{p}{m} = \sqrt{\frac{2}{m} \left(E - V(x) \right)}.$$
(2)

On the other hand, the group velocity, for waves, is given by

$$v_g = \frac{d\omega}{dk} = 1/\left(\frac{dk}{d\omega}\right) \tag{3}$$

Note that $v = \nu \lambda, \omega = 2\pi \nu$ and $k = 2\pi/\lambda$,

$$v_g = 1 \Big/ \frac{d}{d\nu} (1/\lambda) = 1 \Big/ \frac{d}{d\nu} \Big(\frac{\nu}{v(\nu)} \Big)$$
(4)

Using (1) the group velocity $\tilde{\vartheta}$ of waves is given by

$$\frac{1}{\widetilde{\vartheta}} = \frac{d}{d\nu} \left(\frac{\nu}{v(\nu, x)} \right) = \frac{d}{d\nu} \left(\nu f(\nu) \sqrt{E(\nu) - V(x)} \right).$$
(5)

Velocity of a mass point v corresponds to the group velocity v_g of wave packet $(=\tilde{\vartheta})$. Hence from (2) and (5) we obtain

$$\sqrt{\frac{m}{2}}\frac{1}{\sqrt{E-V(x)}} = \frac{d}{d\nu}\Big(\nu f(\nu)\sqrt{E(\nu)-V(x)}\Big)$$
(6)

$$= \frac{d}{d\nu}(\nu f(\nu))\sqrt{E(\nu) - V(x)} + \frac{\nu f(\nu)}{2}\frac{dE(\nu)}{d\nu}\frac{1}{\sqrt{E(\nu) - V(x)}}$$
(7)

This equation will be correct for all x and all $\vartheta(x)$ if

$$\frac{d}{d\nu}(\nu f(\nu)) = 0 \text{ or } \nu f(\nu) = \text{const,K.}$$
(8)

and the coefficient of $\frac{1}{\sqrt{E-V(x)}}$ on both sides are equal:

$$\sqrt{\frac{m}{2}} = \frac{\nu f(\nu)}{2} \frac{dE(\nu)}{d\nu} = \frac{K}{2} \frac{dE(\nu)}{d\nu}$$
(9)

$$\Rightarrow \frac{dE(\nu)}{d\nu} = \text{const}, h \Rightarrow E = h\nu + \text{const.}, \tag{10}$$

Setting this last constant to zero gives

$$E = h\nu \tag{11}$$

and Eq.(10) determines the constant $K = \frac{\sqrt{(2m)}}{h}$. Also $\nu f(\nu) = K$ along with Eq.(1)implies

$$\frac{1}{v(\nu,x)} = \frac{K}{\nu}\sqrt{E(\nu) - V(x)} = \frac{\sqrt{2m}}{h\nu}\sqrt{E(\nu) - V(x)}$$
(12)

 $\mathbf{2}$

or

$$\frac{h}{\sqrt{2m(E(\nu) - V(x))}} = \frac{v}{\nu} = \lambda \tag{13}$$

This gives

$$\lambda = \frac{h}{p} \tag{14}$$

Derivation of Schrödinger Equation For monochromatic waves

$$\nabla^2 \psi - \frac{1}{v^2} \frac{d^2 \psi}{dt^2} = 0 \tag{15}$$

We set $\psi(x,t) = u(x)e^{-i\omega t}$, assuming ω to be fixed, using Eq. (13) we get

$$\nabla^2 u + \frac{\omega^2}{v^2} u = 0 \tag{16}$$

$$\Rightarrow \nabla^2 u + \frac{4\pi^2 \nu^2}{h^2 \nu^2} (2m(E(\nu) - V(x)))u = 0$$
(17)

$$\Rightarrow \nabla^2 u + \frac{2m}{\hbar^2} (E(\nu) - V(x))u = 0 \tag{18}$$

For states with fixed energy, we have

$$E\psi = h\omega\psi \sim i\hbar\frac{\partial\psi}{\partial t},\tag{19}$$

giving the time dependent Schrödinger equation

$$i\hbar\frac{\partial\psi}{\partial t} = -\frac{\hbar^2}{2m}\nabla^2\psi + V(x)\psi \tag{20}$$

Clap!Clap!

Remarks:

The highlight of this route is the derivation of de Broglie relation $\lambda = h/p$ and the Einstein relation $E = h\nu$ for point particles by demanding the action principles for matter and waves give the same result.

I thank Bindu Bambah for providing Fermi's Chicago University lecture notes to me. I wish Fermi's Lecture Notes were available to the present generation of students.

3