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We shall discuss the connection between the coordinate and momen-

tum representations. The relation between the two representations is most

conveniently displayed using the completeness formula∫
|x〉〈x| dx = Î ,

∫
|p〉〈p| dp = Î . (1)

So given a ket vector |f〉 how do you relate the representatives in the co-

ordinate and momentum representations? This process is illustrated below.

We begin with the wave function:

f(x) = 〈x|f〉 = 〈x|Î|f〉 (2)

= 〈x|
∫
|p〉〈p|dp |f〉 (3)

=

∫
dp 〈x|p〉〈p|f〉 (4)

=

∫
dp 〈x|p〉f̃(p). (5)

This gives the desired relation between the coordinate space wave function

f(x) and the momentum space wave function f̃(p). However, we still need to

answer what are the transformation functions 〈x|p〉? This is easy to answer.

For every vector |f〉, the inner product 〈x|f〉 represents that wave function

of the state |f〉. So 〈x|p〉 is wave function of the state |p〉 which is just the

eigenstate of momentum p̂ with eigenvalue p. So this wave function 〈x|p〉 can

be computed by solving the eigenvalue problem of the momentum operator

in the coordinate representation, see next section.
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Eigenfunctions of momentum operators

Delta function normalization Let up(x) denote the wave function for

the state with definite momentum p. Then

p̂up(x) = pup(x),⇒ −i~dup(x)

dx
= pup(x). (6)

The solution of this differential equation is easy to write and is given by

up(x) = C exp(ipx/~) (7)

The normalization constant C is fixed by using the orthonormality property

of the momentum eigenstates 〈p′′|p′〉 = δ(p′′ − p′). Inserting a completeness

identity
∫
|x〉〈x| = Î we get

δ(p′′ − p′) = 〈p′′|p′〉 (8)

= 〈p′′|
(∫

dx |x〉〈x|
)
|p′〉 (9)

=

∫
dx 〈p′′|x〉〈x|p′〉 (10)

=

∫
dxu∗p′′(x)up′(x) (11)

Thus we get the normalization condition∫
dxu∗p′′(x)up′(x) = δ(p′′ − p′) . (12)

Using this condition we can now fix the constant C.∫
dxC∗ exp(−ip′′x/~)C exp(ipx/~) = δ(p′′ − p′) (13)

⇒ 2π~|C|2 = 1. (14)

where in writing the last step the identity∫
dx exp(i(p′ − p′′)x/~) = 2π~δ(p′′ − p′) (15)

has been used. Thus we see that C = 1/
√

2π~ and the normalised eigen-

functions of momentum are given by

up(x) =
1√
2π~

exp(ipx/~). (16)

2



The relation between the coordinate and momentum wave space functions

becomes

f(x) =
1√
2π~

∫
exp(ipx/~)f̃(p) dp. (17)

The inverse relation is easily written down

f̃(p) =
1√
2π~

∫
exp(−ipx/~)f(x) dx. (18)

Box normalization The operators x̂ and p̂ are unbounded operators and

we must deal with infinite dimensional vector spaces. This requires a deeper

level of mathematics than that has been introduced so far. The steps, that

are used to derive answers are all formal and carry no rigour, and are justified

by the fact that the final results are correct and physically sensible. A time

honoured rigorous approach begins with with working out everything by

restricting x to a ’box’ of finite size L and taking L to infinity at the end.

We shall here discuss the box normalisation for momentum wave functions

and give a set of working rules sufficient for later purposes.

Therefore to begin, we start with the Hilbert space of all square inte-

grable functions over the interval (−L/2, L/2). Further it is required that

the functions in this space satisfy the periodic boundary condition

f(x+ L) = f(x). (19)

This ensures that the operators x̂, p̂ defined by

x̂f(x) = xf(x), p̂f(x) = −i~df(x)

dx
(20)

are hermitian. Also they satisfy the required CCR. Next we seek the eigen-

values and eigenfunctions of the momentum operator p̂ and and solution of

the eigenvalue equation

− i~du(x)

dx
= pu(x) (21)

is already found to be

up(x) = N exp(ipx/~). (22)

Imposing the periodic boundary condition u(x+ L) = u(x) we get

exp(ipL/~) = 1⇒ pL/~ = 2πn, n = 0,±1,±2 . . . . (23)
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Thus we have the momentum eigenfunctions and eigenvalues given by

upn(x) = N exp(ipnx/~), pn =
2πn~
L

, n = 0,±1,±2 . . . . (24)

The normalization is chosen to be∫ L/2

−L/2
|upn(x)|2dx = 1. (25)

This gives N = 1√
L

and the normalized eigenfunctions are

upn(x) =
1√
L
eipnx/~ (26)

The eigenfunctions of momentum satisfy the completeness relation∑
n

u∗pn(x)upm(x) = δ(x− y). (27)

The change of representation formula, relating the coordinate and momen-

tum space wave functions assumes the form

ψ̃(pn) =

∫ L/2

−L/2
u∗pn(x)ψ(x)dx, (28)

and the inverse relation is

ψ(x) =
∑
n

upn(x)ψ̃(pn). (29)

Eigenvectors of position

We now seek eigenvectors of position operator x̂. It is not difficult to see

that no eigenvector exists in the conventional sense because if f(x) is and

eigenvector of x̂, then we must have

x̂f(x) = x0f(x) (30)

or (x− x0)f(x) = 0. (31)

Thus f(x) must vanish for all x 6= x0 and will have zero norm. The eigen-

value equation has a formal solution f(x) = δ(x−x0) which can be regarded

as a ’generalized eigenvector’. All these difficulties are ultimately related to

the fact that x̂ is an unbounded operator in the space of square integrable

functions and has no eigenvectors in strict mathematical sense.
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