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Abstract
Assuming time development of states to be given by
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an equation for time variation of average value of a dynamical variable is derived.
Classical correspondence is used to identify the generator of time evolution
with Hamiltonian. A dynamical variable not depending explicitly on time is a
constant of motion if it commutes with the Hamiltonian.

The time evolution of a quantum system is governed by the Schrodinger

equation
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We will obtain an equation for time development of averages of a dynamical variable
F. The result will turn out to have an obvious correspondence with the classical
equation of motion for dynamical variable F'. This then will suggest the identification
of H as the operator representing the Hamiltonian of the system.

Let F(q,p,t) be an dynamical variable of the system and let F denote the cor-

responding operator. We are interested in finding out how the average value
(F) = (ot|Flyt) (2)

changes with time. The time dependence of the average value comes from depen-
dence of the three objects, the operatorﬁ7 the bra vector (it|, and the ket vector
|1t), present in Eq.(2)). The equation conjugate to the Schrodinger equation
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Since the operator H is hermitian, the above equation takes the form
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Ut| = (Yt|H (5)
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Therefore
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Using Eq.(3) and Eq.(@) in Eq.(@) we get
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The above equation is rearranged to give the final form
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This result is known as Ehrenfest theorem. Comparing Eq.(8]) with the equation of

motion in classical mechanics for time evolution of dynamical variables
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and remembering that the commutator divided by #h corresponds to the Poisson
bracket in the limit A — 0, we see that H must be identified as the operator corre-

sponding to the Hamiltonian H of the system.



