Notes for Lectures on Quantum Mechanics * Solution of Time Dependent Schrödinger Equation

A. K. Kapoor
http://0space.org/users/kapoor
akkapoor@cmi.ac.in; akkhcu@gmail.com

A scheme to solve the time dependent Schrödinger equation

$$
\begin{equation*}
i \hbar \frac{d}{d t}|\psi\rangle=\hat{H}|\psi\rangle \tag{1}
\end{equation*}
$$

is described. The final solution will be presented in the form, see Eq. 17

$$
\begin{equation*}
|\psi t\rangle=U\left(t, t_{0}\right)\left|\psi t_{0}\right\rangle \tag{2}
\end{equation*}
$$

For our present discussion, it will be assumed that the Hamiltonian \hat{H} does not depend on time explicitly. Let the state vector of system at initial time $t=0$ be denoted by $\left|\psi_{0}\right\rangle$.

Since \hat{H} is always assumed to be hermitian, its eigenvectors form an orthonormal complete set and we can expand the state vector at time $t,|\psi t\rangle$, in terms of the eigenvectors. Denoting the normalized eigenvectors by $\left|E_{n}\right\rangle$, we write

$$
\begin{equation*}
|\psi t\rangle=\sum_{n} c_{n}(t)\left|E_{n}\right\rangle . \tag{3}
\end{equation*}
$$

where the constants $c_{n}(t)$ are to be determined. Substituting (3) in (1), we get

$$
\begin{align*}
i \hbar \frac{d}{d t} \sum_{n} c_{n}(t)\left|E_{n}\right\rangle & =\hat{H}|\psi t\rangle \tag{4}\\
i \sum_{n} \hbar \frac{d c_{n}(t)}{d t}\left|E_{n}\right\rangle & =\sum_{n} c_{n}(t) \hat{H}\left|E_{n}\right\rangle \tag{5}
\end{align*}
$$

Taking scalar product with $\left|E_{m}\right\rangle$ and using orthonormal property of the eigenvectors $\left|E_{n}\right\rangle$, we get

$$
\begin{equation*}
i \hbar \frac{d c_{m}(t)}{d t}=E_{m} c_{m}(t) \tag{6}
\end{equation*}
$$

which is easily solved to give

$$
\begin{equation*}
c_{m}(t)=c_{m}(0) e^{-i E_{m} t / \hbar} \tag{7}
\end{equation*}
$$

Therefore, $|\psi t\rangle$,the solution of time dependent equation becomes

$$
\begin{equation*}
|\psi t\rangle=\sum_{m} c_{m}(0) e^{-i E_{m} t / \hbar} \cdot\left|E_{m}\right\rangle . \tag{8}
\end{equation*}
$$

[^0]The coefficients $c_{m}(0)$ are determined in terms of the state vector $\left|\psi_{0}\right\rangle$ at time $t=0$ by setting time $t=0$ in the above equation. This gives

$$
\begin{equation*}
\left|\psi_{0}\right\rangle=\sum_{n} c_{n}(0)\left|E_{n}\right\rangle \tag{9}
\end{equation*}
$$

The unknown coefficients $c_{n}(0)$ can now be computed; taking scalar product of Eq.(9), with $\left|E_{m}\right\rangle$ we get

$$
\begin{equation*}
c_{m}(0)=\left\langle E_{m} \mid \psi_{0}\right\rangle \tag{10}
\end{equation*}
$$

Thus Eq. (8) and (10) give the solution of the time dependent Schrödinger equation as

$$
\begin{equation*}
|\psi t\rangle=\sum_{n} c_{n}(0) \exp \left(-i E_{n} t / \hbar\right)\left|E_{n}\right\rangle . \tag{11}
\end{equation*}
$$

The right hand side of the above equation can be rewritten as

$$
\begin{align*}
\sum_{n} c_{n}(0) \exp \left(-i E_{n} t / \hbar\right)\left|E_{n}\right\rangle & =\sum_{n} c_{n}(0) \exp (-i H t / \hbar)\left|E_{n}\right\rangle \tag{12}\\
& =\exp (-i H t / \hbar) \cdot \sum_{n} c_{n}(0)\left|E_{n}\right\rangle \tag{13}
\end{align*}
$$

Therefore Eq. (11) takes the form

$$
\begin{equation*}
|\psi t\rangle=\exp (-i H t / \hbar)\left|\psi_{0}\right\rangle \tag{14}
\end{equation*}
$$

In general, if the state vector is know at time $t=t_{0}$, instead of time $t=0$, the result Eq.(14) takes the form

$$
\begin{align*}
|\psi t\rangle & =\exp \left(-i H\left(t-t_{0}\right) / \hbar\right) \sum_{n} c_{n}\left(t_{0}\right)\left|E_{n}\right\rangle \tag{15}\\
& =\exp \left(-i H\left(t-t_{0}\right) / \hbar\right)\left|\psi t_{0}\right\rangle \tag{16}
\end{align*}
$$

The time evolution operator $U\left(t, t_{0}\right)$, of Eq. (2), is therefore given by

$$
\begin{equation*}
U\left(t, t_{0}\right)=\exp \left(-i H\left(t-t_{0}\right) / \hbar\right) \tag{17}
\end{equation*}
$$

[^0]: *qm-lecs-09003-Updated:Sept 6, 2021; Ver 0.x

