Notes for Lectures on Quantum Mechanics * Solution of Time Dependent Schrödinger Equation

A. K. Kapoor http://0space.org/users/kapoor akkapoor@cmi.ac.in; akkhcu@gmail.com

A scheme to solve the time dependent Schrödinger equation

$$i\hbar \frac{d}{dt} |\psi\rangle = \hat{H} |\psi\rangle \tag{1}$$

is described. The final solution will be presented in the form, see Eq.(17)

$$|\psi t\rangle = U(t, t_0)|\psi t_0\rangle \tag{2}$$

For our present discussion, it will be assumed that the Hamiltonian \hat{H} does not depend on time explicitly. Let the state vector of system at initial time t = 0 be denoted by $|\psi_0\rangle$.

Since \hat{H} is always assumed to be hermitian, its eigenvectors form an orthonormal complete set and we can expand the state vector at time t, $|\psi t\rangle$, in terms of the eigenvectors. Denoting the normalized eigenvectors by $|E_n\rangle$, we write

$$|\psi t\rangle = \sum_{n} c_n(t) |E_n\rangle.$$
(3)

where the constants $c_n(t)$ are to be determined. Substituting (3) in (1), we get

$$i\hbar \frac{d}{dt} \sum_{n} c_n(t) |E_n\rangle = \hat{H} |\psi t\rangle \tag{4}$$

$$i\sum_{n}\hbar\frac{dc_{n}(t)}{dt}|E_{n}\rangle = \sum_{n}c_{n}(t)\hat{H}|E_{n}\rangle$$
(5)

Taking scalar product with $|E_m\rangle$ and using orthonormal property of the eigenvectors $|E_n\rangle$, we get

$$i\hbar \frac{dc_m(t)}{dt} = E_m c_m(t).$$
(6)

which is easily solved to give

$$c_m(t) = c_m(0)e^{-iE_m t/\hbar}.$$
 (7)

Therefore, $|\psi t\rangle$, the solution of time dependent equation becomes

$$|\psi t\rangle = \sum_{m} c_m(0) e^{-iE_m t/\hbar} . |E_m\rangle.$$
(8)

 $^{^{*}}$ qm-lecs-09003-Updated:Sept 6, 2021; Ver 0.x

The coefficients $c_m(0)$ are determined in terms of the state vector $|\psi_0\rangle$ at time t = 0 by setting time t = 0 in the above equation. This gives

$$|\psi_0\rangle = \sum_n c_n(0)|E_n\rangle.$$
(9)

The unknown coefficients $c_n(0)$ can now be computed; taking scalar product of Eq.(9), with $|E_m\rangle$ we get

$$c_m(0) = \langle E_m | \psi_0 \rangle. \tag{10}$$

Thus Eq.(8) and (10) give the solution of the time dependent Schrödinger equation as

$$|\psi t\rangle = \sum_{n} c_n(0) \exp(-iE_n t/\hbar) |E_n\rangle$$
(11)

The right hand side of the above equation can be rewritten as

$$\sum_{n} c_n(0) \exp(-iE_n t/\hbar) |E_n\rangle = \sum_{n} c_n(0) \exp(-iHt/\hbar) |E_n\rangle$$
(12)

$$= \exp(-iHt/\hbar) \cdot \sum_{n} c_n(0) |E_n\rangle$$
(13)

Therefore Eq.(11) takes the form

$$|\psi t\rangle = \exp(-iHt/\hbar)|\psi_0\rangle. \tag{14}$$

In general, if the state vector is know at time $t = t_0$, instead of time t = 0, the result Eq.(14) takes the form

$$|\psi t\rangle = \exp(-iH(t-t_0)/\hbar) \sum_n c_n(t_0) |E_n\rangle$$
 (15)

$$= \exp(-iH(t-t_0)/\hbar)|\psi t_0\rangle.$$
(16)

The time evolution operator $U(t, t_0)$, of Eq.(2), is therefore given by

$$U(t, t_0) = \exp(-iH(t - t_0)/\hbar).$$
(17)

qm-lecs-09003	0.x Created : Nov 4, 2010 H	Printed:September 28, 2021	KApoor
Proofs	LICENSE: CREATIVE COMMONS	NO WARRANTY, IMPLIED OR	OTHERWISE
Open MEXFile	qm-lecs-09003		