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§1 Lesson Objectives

1. To introduce configuration space of a system;

2. To introduce paths in configuration space and to define action as a functional

of paths in configuration space;

3. To formulate Hamilton’s action principle and and to prove that it is equivalent

to Euler Lagrange equations of motion.

4. To explain Weiss action principle.

§2 Points to Recall and Discuss

The state of a system consisting of n particles and having r holonomic constraints can

specified by a set of N = n− r independent generalized coordinates q = (q1, q2, qN ).

The dynamics of the system is governed by Lagrangian L which is a function

of 2N variables q, q̇.

The Euler Lagrange equations of motion

d

dt

( ∂L

∂q̇k

)

−
∂L

∂qk
= 0. (1)
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describe the dynamics of a mechanical system.

§3 Configuration Space Action functional

§3.1 Configuration space

Let us consider a system with N degrees of freedom. At a given time t the system

is completely specified by giving values the values of N generalised coordinates

q1(t), . . . , qN (t) and their time derivatives.

We may arrange q′s in a row to form an N component vector

q = (q1, q2, . . . , qN ) (2)

the N component vector can be represented by points in an N dimensional space

called configuration space. Conversely a point in configuration space represents a

possible set of values of (q1, . . . , qN )

§3.2 Paths in configuration space

With time q change and so also does the position of the point representing the

system. Thus with time, the point representing the system will trace out a path

in configuration space. This path in configuration space is obtained by solving the

Euler Lagrange equations of motion.

As Euler Lagrange equations are second order differential equations, the motion

of the system, i.e. the state at any time, is completely known if we specify the initial

values of q and q̇ at some time t0.. With this as input, solving the Euler Lagrange

equations of motion gives the generalised coordinates q(t) at all times, hence the

path followed by system, in the configuration space is known.

§3.3 Specifying coordinates at the end points

To solve the Euler Lagrange equations for time t in the interval (t1, t2), one may

give boundary conditions on q instead of initial conditions on q, q̇ at time t1. This

means that coordinates q at the initial time t1 and the final t2 are to be specified.

Thus we look for solution of Euler Lagrange equations.

q(t) = {q1(t), . . . , qN (t)} for t1 ≤ t ≤ t2 (3)

subjected to conditions

q(t1) = {q1(t1), . . . , qN (t1)}, q(t2) = {q1(t2), . . . , qN (t2)}. (4)

This amounts to asking what path is followed in configuration space, if we know the

end points P1 and P2. Several paths in configuration space with fixed end points

are shown below.
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Fig. 1 Paths in configuration space with fixed
end points

§3.4 The Actional Functional

Which path forms the solution of equations of motion? The answer given by the

Hamilton’s principle also known as the “Action Principle”, is stated below. We first

define action functional Φ[C] as a functional of paths. Given a path C, we know the

coordinates as function of time. Along a given path the generalised velocities, q̇, at

time t, are computed by taking time derivatives of the coordinates.

q̇(t) =
{dq1(t)

dt
,
dq2(t)

dt
, . . . ,

dqN (t)

dt

}

(5)

Thus the Lagrangian L(q, q̇, t), for a given path, is expressible as a function of

time t. This function of time when integrated over t, from t1 to t2, defines the action

functional 1 Φ[C] for the path C:

Φ[C] =

∫ t2

t1

L(q, q̇, t)dt. (6)

Note that for a given system, the right hand is a number which depends on the path

C, being different for different paths.

1A functional is a number assigned to function taken from class of functions. Here the functions
are coordinates qk(t) as function of time.
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Important:

✍ It is important to remember that the Lagrangian is a function of 2N
independent variables (q, q̇). Therefore for purpose of computing partial
derivative of the Lagrangian w.r.t. qk means that all qj, j 6= k, and all
q̇m are held constants, with a similar statement for derivatives of L w.r.t.
the generalized velocities. Thus

∂L

∂qk
≡

∂L

∂qk

∣

∣

∣

qj ,q̇m
,

∂L

∂q̇k
≡

∂L

∂q̇k

∣

∣

∣

qm,q̇j
,where j 6= k, and all m. (7)

✍ The action functional is a functional of paths in the configuration space.
Along a path in configuration space, the generalized coordinates q are
some functions of time t. The generalized velocities along the path q̇ are
to be computed by differentiating q(t) w.r.t. t.

q̇k(t) ≡
dqk(t)

dt
. (8)

This may be rephrased as ”for purpose of computing the action func-
tional along a given path in configuration space, the generalized coordi-
nates and generalized velocities are no longer independent.”

§4 Hamilton’s Principle

As already mentioned, a solution to the Euler Lagrange equations of motion requires

specification of generalized coordinates and generalized velocities at initial time.

Alternatively, a solution to the Euler Lagrange equations can be obtained by

specifying the generalized coordinates at the initial and final times t1 and t2. As we

shall see below, the action principle formulates the path followed, between two end

points, as being the path which makes the action extremum.

§4.1 Infinitesimally close paths

Let C be a given path connecting the points q1 at t1 to point q2 times t2. Let C ′

be another path which differs infinitesimally from the path C. The path C ′ starts

from q ′

1
at time t ′

1
and ends at q ′

2
at time t ′

2
. Let the values of coordinates be q(t)

and q ′(t) for the two paths. We will say that C ′ is infinitesimally different from the

path C, if the quantities defined by

∆t1 = t ′1 − t1, ∆t2 = t ′2 − t2, (9)

∆q1 = q ′

1 − q1, ∆q2 = q ′

2 − q2, (10)

and

δq(t) = q ′(t)− q(t), t1 ≤ t ≤ t2, (11)

are infinitesimal quantities. For our present purpose, it will be unimportant weather

we take (t1, t2), or (t
′

1
, t ′

2
), as the range of t in equation Eq.(6).

The difference in velocities for the two paths is computed by using

δq̇(t) =
d

dt
q ′(t)−

d

dt
q(t) =

d

dt
(δq(t)). (12)
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§4.2 Computing variation of action

To formulate Hamilton’s principle, we compute variation of action functional when

path is varied from C to C ′

Φ[C ′]− Φ[C] (13)

=

∫ t ′2

t ′1

L(q ′(t), q̇ ′(t), t)dt−

∫ t2

t1

L(q(t), q̇(t), t)dt (14)

=

∫ t1

t ′1

L(q ′(t), q̇ ′(t), t)dt+

∫ t2

t1

L(q ′(t), q̇ ′(t), t)dt+

∫ t ′2

t2

L(q ′(t), q̇(t), t)dt

−

∫ t2

t1

L(q(t), q̇(t), t)dt (15)

≈ (t1 − t ′1)L(q(t1), q̇(t1), t) +

∫ t2

t1

{L(q ′(t), q̇ ′(t), t) − L(q(t), q̇(t), t)}dt

+(t ′2 − t2)L(q2, q̇2, t2) (16)

What lies behind the last step? (17)

≈ −∆t1L(q(t1), q̇(t1), t1) + ∆t2L(q(t2), q̇(t2), t2)

+

∫ t2

t1

{L(q ′(t), q̇ ′(t), t) − L(q(t), q̇(t), t)}dt (18)

We substitute for q ′(t) in the last term of (18)

q ′(t) = q(t) + δq(t), (19)

and use the fact that the paths C ′ and C differ by infinitesimal amount to get
∫ t2

t1

[L(q ′, q̇ ′, t)− L(q, q̇, t)] dt (20)

=

∫ t2

t1

[

L
(

q+ δq, q̇(t) +
d

dt
δq(t)

)

− L(q, q̇, t)

]

dt (21)

≈

∫ t2

t1

∑

k

( ∂L

∂qk
δqk +

∂L

∂q̇k
δq̇k

)

dt+ second order terms (22)

=

∫ t2

t1

∑

k

(

∂L

∂qk
δqk −

d

dt

( ∂L

∂q̇k

)

δqk

)

dt+
∑

k

∂L

∂q̇k
δqk

∣

∣

∣

t2

t1
(23)

Integration by parts has been done in the second term (24)

Substituting (23) in (18) we get

Φ[C ′]− Φ[C] ≈

∫ t2

t1

(

∑

k

∂L

∂qk
−

d

dt

( ∂L

∂q̇k

))

δqk +
[

L∆t+
∑

k

∂L

∂q̇k
δqk

]t2

t1
(25)

✍ It must be remembered that so far we have kept the variation paths to be

general one; there is no restriction that the paths must have the same end

points.

§4.3 Condition for an extremum

We first consider special class of variations of path which keep the end points fixed,

i.e.

∆t1 = ∆t2 = 0 (26)
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∆qk(t1) = 0; ∆qk(t2) = 0. (27)

For such variations we get

∆Φ(C) =

∫ t2

t1

∑

k

( ∂L

∂qk
−

d

dt

∂L

∂q̇k

)

δqk(t)dt. (28)

Since the generalized coordinates are independent and the variations δq are arbi-

trary, right the right hand side of (28) vanishes if and only if the Euler Lagrange

equations, ,

d

dt

( ∂L

∂q̇k

)

−
∂L

∂qk
= 0, Write all steps from the last equation. , (29)

are satisfied i.e. q(t) is solution of EOM. This is summarised into the following

statement of action principle.

§4.4 Action Principle — The Statement

Given configurations q1,q2 at times t1 and t2, the actual dynamical path C followed

by a system is that for which the action is stationary i.e. C is that path about which

infinitesimal variations, with fixed end points, do not produce any change in Φ. If

C ′ is any other path infinitesimally close to C, then

δΦ = Φ[C ′]− Φ[C] = 0.

In other words, the action is stationary for the actual trajectory followed by the the

system.

§5 Weiss Action Principle

This principle is about characterizing the paths in terms of general variations of the

action, when the end points may not be fixed. It states that the dynamical path C

followed by the system is such that the variations about the path produce only end

point contribution to the variation in action

∆Φ[C] = ∆

∫ t2

t1

L(q, q̇, t)dt

=
∑

k

( ∂L

∂q̇k

)

δqk −H∆t
∣

∣

t2

t1
.

where

H =
∑

k

( ∂L

∂q̇k

)

q̇k − L (30)

is called the Hamiltonian of the system. We skip the details of the steps leading to

the Weiss action principle.

To check steps for Weiss action principle

§6 EndNotes

1. For action principle see [1, 4, 2, 3]; Weiss action principle can be found in [3].

2. For an account of different variational principles and historical developments

see [5, 6]
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§7 Anti Black Boxes

Eq.(17): A result that

∫

f(x)dx ≈ (b− a)f(x), a < x < b

has been used. Try to formulate a precise statement of this result.

Closest to this ’vague’ statement is the mean value theorem for integrals.

If f is a continuous function on the closed, bounded interval [a, b], then there
is at least one number c in (a, b) for which

f(c) = 1/(b − a)Int(f(t), t = a..b).

Ref1: Mean Value Theorem ;

Ref2: First mean value theorem for definite integrals.

Eq.(29): ]We give some details here. Here you have an equation of the form

∫ t2

t1

Fk(t)δqk(t)dt = 0. (31)

where δqk(t) are arbitrary and independent functions. You are required to

prove Fk(t) = 0 for all t1 < t < t2.

(a) Since δqk(t) are arbitrary and independent functions, you are allowed to

choose δqk(t) = Fk(t). This gives

∫ t2

t1

∑

k

∣

∣Fk(t)
∣

∣

2
dt = 0. (32)

Assuming Fk(t) to be continuous functions of t, (32) holds if and only if

∑

k

∣

∣Fk(t)
∣

∣

2
= 0

A sum of positive terms can be zero if and only if each term vanishes. This

gives us Eq.(29).
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