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§1 Lesson objectives

The qualitative features of motion in a spherically symmetric potential are discussed

with focus on

1. Nature of orbits; Accessible region; planar orbits for a spherically symmetric

potential. Bounded and unbounded motion.

2. Condition(s) for circular orbits; Stability of circular orbits.

3. Fall to centre.

4. Escape to infinity.

* Ver 0.x
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§2 Let’s recall and discuss

We first briefly recall method used for qualitative discussion of motion in one dimen-

sion. Many of these ideas will be used here for radial motion in three dimensions.

Simplest physical systems of interest, for example Sun and Earth system, are two

body systems interacting via a potential dependent only the distance between the

two bodies only. This problem can be reduced to an equivalent one body problem

in a spherically symmetric potential.

§2.1 Recall and Discuss — One dimension

Equilibrium points

If a particle, moving in one dimension, is released from rest at some point, it will

in general move towards lower potential energy. If it is released at a minimum or

maximum of the potential, it will remain at rest It therefore follows that at these

points ẋ = ẍ = 0.

Let x0 be a point where the particle in equilibrium.

If the point x0 is a minimum of the potential and the particle is disturbed slightly,

it will execute oscillations about the minimum. In this case we say that the point

x0 is a point of {it stable equilibrium}.

If the equilibrium point is a maximum of the potential and even a slightest

disturbance will make the particle move away from the equilibrium. In this case we

say that the equilibrium is unstable.

Turning points

1. A particle moving in a potential cannot go to regions where its energy is less

than the potential energy. Its motion is confined to those values of x where

V (x) ≤ E

. To see this note that we must have

E =
p2

2m
+ V (x) (1)

∴ E ≥ V (x) (2)

∵ K.E. = p2

2m
> 0 .

2. The region, the set of values of x where (1) holds, is called classically accessible

region.

3. The points where E = V (x) are called turning points. At a turning point the

velocity becomes zero, ẋ = 0.

Range of energies for bounded motion

Assuming a continuous potential V (x), the potential will have a minimum or a

maximum between two turning points. For a given energy, a particle will execute a
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bounded motion if the potential has two turning points such that it has a minimum

between the turning points.

In general, whether the motion is bounded, or unbounded, depends on the initial

conditions and energy of the particle.

For all possible initial conditions the motion is bounded only if the energy is

less that the values of potential V (±∞) and if both V (±∞) are greater than the

absolute minimum of the potential.

§2.2 Recall and discuss — Reduction of two body problem

The Lagrangian of two body system

L =
1

2
m1

(d~x1

dt

)2

+
1

2
m2

(d~x2

dt

)2

− V (~x1 − ~x2) (3)

decomposes as sum of Lagrangian for the centre of mass and the for the relative

motion:

L = Lcm + Lrel, (4)

Lcm =
1

2
M

(d ~Xcm

dt

)2

, (5)

Lrel =
1

2
µ
(d~x

dt

)2

− V (~r). (6)

Here M = m1 + m2 is the total mass, andµ =
m1m2

m1 +m2

is called reduced mass of

the two body system. The energy of the relative motion is given by

E =
1

2
µ
(d~x

dt

)2

+ V (~r). (7)

§3 Effective potential for radial motion

§3.1 Spherically symmetric potential— Conservation laws

Consider motion of a particle is a spherically symmetric potential taking the La-

grangian of a system to be given by

L =
1

2
µ~̇r 2 − V (r) (8)

The Lagrangian does not contain time explicitly, hence we obtain energy conserva-

tion
1

2
µ~̇r 2 + V (r) = E (constant). (9)

The Lagrangian is also invariant under rotations about any axis and in particular

about the coordinate axes. This gives us conservation of angular momentum. Thus

we have
~L = µ~r × ~v = constant of motion (10)
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§3.2 Radial motion

We shall now make use of the conservation laws to give solution of motion in a

spherically symmetric potential to quadratures.

Since ~L = µ~r × ~v is a constant of motion the magnitude as the direction of ~L

does not change with time. Also ~r and ~v always perpendicular to ~L which points in

a fixed direction. Hence ~r and ~v remain in the plane perpendicular to ~L. Therefore

for a particle in a spherically symmetric potential, the motion is confined to a plane.

If ~L is zero, then ~r × ~v = 0 and ~r will always be parallel to ~v and the particle

moves in a straight line.

We, therefore, start with Lagrangian for a particle in two dimensions in plane

polar coordinates

L =
1

2
µ~̇r 2 +

1

2
µr 2φ̇2 − V (r). (11)

§3.3 Energy conservation

The expression for energy, associated with relative motion, given by

E =
1

2
µṙ2 +

1

2
µr2φ̇2 + V (r). (12)

The energy is conserved because the Lagrangian (11) is independent of time.

§3.4 φ is a cyclic coordinate

Since φ̇ is a cyclic coordinate we have

∂L

∂φ̇
= µr2φ̇ = constant, sayL. (13)

µr2φ̇ is in fact seen to be equal to the magnitude of angular momentum.

§3.5 Effective potential

The velocity φ̇ can be eliminated using

φ̇ =
L

2µr2
(14)

Making use of (12) and (14) we get,

E =
1

2
µṙ2 +

L2

2µr2
+ V (r) =

1

2
µṙ2 + Veff(r) (15)

where we have introduced the notation

Veff(r) = V (r) +
L2

2µr2
. (16)
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§4 General properties of radial motion

The radial motion in three dimensions in a spherically symmetric potential is just

like motion in one dimension. The following discussion of motion in one dimension

can be usefully extended to the radial motion in a spherically symmetric potential,

if we replace the potential by the effective potential.

V (x) −→ Veff(r) = V (r) +
L2

2mr2
(17)

Thus for motion in three dimensional spherically symmetric potential

E =
1

2
mṙ2 + Veff(r). (18)

§4.1 Nature of Orbits

1. Conservation of angular momentum implies the motion of particle is in a plane

2. If angular momentum is zero, ~r × ~p = 0. =⇒ ~r and ~p are parallel. In this case

the particle moves in a straight line.

3. If angular momentum is nonzero, the bounded or unbounded nature of the

orbit can be decided in the same fashion as in one dimension by looking at the

plot of the effective potential.

4. The motion is always confined to region where

E ≥ Veff(r). (19)

For a bounded motion, r varies between two extreme values r1 and r2, which

correspond to the turning points. For these points the radial velocity becomes

zero and the total energy is given by Veff(r1) = Veff(r2) = E.

§4.2 Circular orbits

1. The equilibrium in one dimension correspond to a fixed value of x(t) = constant

and ẋ = ẍ = 0 for all times. In three dimensions r(t) = constant, R corre-

sponds to a circular orbit. For a circular orbit of radius R, we will have

ṙ = r̈ = 0 for all times. Thus the radius of a circular orbit is given by minima

and maxima of the effective potential, (use (18)).

dVeff(r)

dr

∣

∣

∣

r=R
= 0. (20)

2. r = constant. and angular momentum conservation mr2φ̇ = constant imply

φ̇ = constant.

Thus the particle moving in a circular orbit has a constant constant angular

velocity.

3. For a bounded motion we will have r1 < r < r2 and for a circular orbit of

radius R, we must have r1 = r2 = R and the energy is given by E = Veff(R).

See Fig.1.
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Fig. 1

§4.3 Stability of circular orbits

For a circular orbit radial velocity and acceleration are zero. Hence mr̈ = 0 =⇒
∂
∂r

(

V (r) + L2

mr2

)

= 0. Thus the circular orbits correspond to the maxima and

minima of the effective potential Veff(r).

The maximum corresponds to an unstable circular orbit orbit. The minimum

corresponds to a stable circular orbit.

r = r0 + η

§4.4 Fall to center

Let V(r) be finite as r −→ 0. Then Veff(r) −→ ∞ as r −→ 0 and a particle cannot

reach r=0 for any value of E. However, for certain singular potentials the particle

can reach center. Consider, for example, the case of a potential V = −g
r4
, g > 0.

Then the effective potential is

Veff =
−g

r4
+

L2

2mr2
(21)

A sketch of the effective potential is shown in Fig.2. If E > maximum of Veff, then

a particle coming from large distance can fall to center.

r

V  (r)
eff

Fig. 2 Fall to centre
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§4.5 Escape to ∞

Assume V (r) −→ 0 as r −→ ∞

r

V  (r)
eff

Fig. 3 Escape to infinity

A particle moving out can escape to infinity if E > maximum of Veff for r > 0.

§5 EndNotes
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