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§1 Configuration space

Let us consider a system with N degrees of freedom. At a given time the system

is completely specified by giving values the values of N generalised coordinates

q1(t), . . . , q1(N). We may arrange q′s in a row to form an N component vector

q = (q1(t), . . . , qN (t)) (1)

the N component vector can be represented by points in an N dimensional space

called configuration space. Conversely a point in configuration space represents a

possible set of values of (q1, . . . , qN )

With time q′ change and also does the position of the point representing the

system. Thus with time, the point representing the system will trace out a path

in configuration space. As Euler Lagrange equations are second order differential

equations, the motion of the system, the state at any time is completely known if

we specify the initial values of q and q̇ at some time t0.. With this as input solving

the Euler Lagrange equations of motion give the generalised coordinates q(t) at all

times hence the path followed by the system in the configuration space is known.

We say that possible states of system are given by points in configuration space

and a set of generalised velocities. Knowing the state at initial time, the state at a

later time is given by the solution of equations of motion.

§2 Paths in configuration space

An equivalent way of specifying the motion completely is to give the coordinates q

at two different times t1 and t2. Thus we are looking for solution of Euler Lagrange

equations.

q(t) = (q1(t), . . . , qN (t)) for t1 ≤ t ≤ t2 (2)

when their values at the initial time and final time

q(t1) = (q1(t1), . . . , qN (t1)), q(t2) = (q1(t2), . . . , qN (t2)) (3)

are known. This amounts to asking what path is followed in configuration space, if

we know the end points P1 and P2. Several paths in configuration space with fixed

end points are shown below.

1

http://0space.org/users/kapoor
akkapoor@cmi.ac.in
 akkhcu@gmail.com 


  t

q
2

q
3q

N

P
1

P 2

A

B

C

q1

Fig. 1 Paths in configuration space with fixed
end points

✍ It is important to remember that the Lagrangian is a function of two indepen-

dent variables qk, q̇k.

✍ The action functional is functional of paths in the configuration space. Along

a path in configuration space qk are some functions of time t and q̇k is to

be computed differentiating qk(t) w.r.t. t. This may be rephrased as ”the

generalized coordinates and generalized velocities are no longer independent.”

§3 Action functional

The answer given by the Hamilton’s principle also known as the “Action Principle”,

is stated below. We first define action functional Φ(C) or (SC). Given a path C, we

known the coordinates as function of time and also the generalised velocities.at times

between t1 and t2. Thus the Lagrangian L(q, q̇, t), for a given path, is expressible

as a function of time t. This function of time when integrated over from t1 to t2

defines the action functional Φ(c) for the path C: 1

Φ(C) =

∫ t2

t1

L(q, q̇, t)dt. (4)

Note that for a given system, the right hand is a number which depends on the path

C, being different for different paths.

§4 Infinitesimally close paths

Now let C be a path which differs infinitesimally from the path C. The path C ′

starts from q′ at time t′
1
and ends at q′

2
at time t′

2
. Let the values of coordinate be

1A functional is a number assigned to function taken from class of functions. Here the functions
are coordinates qk(t) as function of time.
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q(t) at times between t′
1
and t′

2
. We will say that C ′ is infinitesimally different from

the path C if the quantities defined by

∆t1 = t′
1
− t, ∆t2 = t′

2
− t2, (5)

∆q1 = q′
1
− q1, ∆q2 = q′

2
− q2, (6)

and

δq1(t) = q′1(t)− q(t), t1 ≤ t ≤ t2, (7)

are infinitesimal quantities. For our present purpose, it is unimportant weather we

take (t1, t2) or (t
′

1
, t′

2
) as the range of t in equation Eq.(4). The difference in velocities

for the two paths is computed by using

δq̇(1) =
d

dt
q′(t)−

d

dt
q(t) (8)

=
d

dt
(δq(t)). (9)

§5 Computing variation of action

To formulate Hamilton’s principle, we compute variation of action functional when

path is varied from C to C ′

Φ(C ′)− Φ(C) (10)

=

∫ t′
2

t′
1

L(q′1(t), q̇(t), t)dt−

∫ t2

t1

L(q(t), q̇(t), t)dt (11)

=

∫ t1

t′
1

L(q′(t), q̇′(t), t)dt +

∫ t2

t1

L(q′, q̇′, t)dt+

∫ t′
2

t2

L(q′, q̇, t)dt

−

∫ t2

t1

L(q, q̇, t)dt (12)

≈ (t1 − t′
1
)L(q(t1), q̇(t1), t) +

∫ t2

t1

{L(q′, q̇′, t)− L(q, q̇, t)}dt

+(t2 − t′2)L(q2, q̇2, t2) (13)

≈ −∆t1L(q(t1), q̇(t1), t1) + ∆t2L(q(t2), q̇(t2), t2

+

∫ t2

t1

{L(q′(t), q̇′(t), t)− L(q(t), q̇(t), t)}dt

(14)

We substitute for q′(t) in the last term of (14)

q′(t) = q(t) + δq(t), (15)
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and use the fact that the paths C ′ and C differ by infinitesimal amount to get

∫ t2

t1

[L(q′, q̇′, t)− L(q, q̇, t)] dt (16)

=

∫ t2

t1

[

L
(

q + δq, q̇(t) +
d

dt
δq(t)

)

− L(q, q̇, t)

]

dt (17)

≈

∫ t2

t1

∑

k

( ∂L

∂qk
δqk +

∂L

∂q̇k
δq̇k

)

dt+ second order terms (18)

=

∫ t2

t1

∑

k

(

∂L

∂qk
δqk −

d

dt

( ∂L

∂q̇k

)

δqk

)

dt+
∑

k

∂L

∂q̇k
δqk

∣

∣

∣

t2

t1
(19)

Integration by parts has been done in the second term (20)

Substituting (19) in (14) we get

Φ(C ′)−Φ(C) ≈

∫ t2

t1

(

∑

k

∂L

∂qk
−

d

dt

( ∂L

∂q̇k

))

δqk +
[

L∆t+
∑

k

∂L

∂q̇k
δqk

]t2

t1
(21)

✍ It must be remembered that in the variations in the action along a path as

computed in (21), there is no restriction on the infinitesimally close paths.

§6 Hamilton’s Principle

We first consider special class of variations of path which keep the end points fixed,

i.e.

∆t1 = ∆t2 = 0 (22)

∆qk(t1) = 0; ∆qk(t2) = 0. (23)

For such variations we get

∆Φ(C) =

∫ t2

t1

∑

k

( ∂L

∂qk
−

d

dt

∂L

∂q̇k

)

δqk(t)dt. (24)

It is now seen that the right the right hand side of (24) vanishes when ever Euler

Lagrange equations are satisfied i.e. q(t) is solution of EOM and the variation of

action is zero implies that Euler Lagrange equations are satisfied. This is summarised

into the following statement of action principle.

Action Principle Given the configurations q1, q2 at times t1 and t2, the actual

dynamical path C followed by a system is that for which the action is stationary i.e.

C is that path about which infinitesimal variations do not produce any change in Φ

δΦ = Φ(C ′)− φ(C) = 0.

Note that the variation in path should not change the end points of the path.

§7 Weis Action Principle

This principle is about characterizing the paths in terms of general variations of the

action, when the end points may not be fixed. It states that the dynamical path
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followed by the system is such that the variations about the classical trajectory have

only end point contribution

∆Φ(C) = ∆

∫ t2

t1

L(q, q̇, t)dt

=
∑

k

( ∂L

∂q̇k

)

δqk −H∆t
∣

∣

t2

t1
.
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