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Preface

The twentieth century saw great discoveries and growth in all sciences, par-
ticularly physics. The amount of core, or basic physics a student has to learn
before reaching a research or advanced graduate level has become several
times than what used to be about fifty years ago. Despite this, the number
of years available to a student after 10+2 school level years has remained the
same: three years at undergraduate level and two at the graduate or MSc
level.

In order to cope with this situation, universities have been including more
and more of the recent developments in the syllabi at the cost of the fun-
damental concepts and methods which require more time to absorb. The
students quickly learn the tricks to somehow manage, hoping to get a fuller
understanding later on. That hope, sadly, is not fulfilled due to demands of
work.

It has been our experience that with the inclusion of more content, a great
harm is done to the teaching of basic mathematical and experimental skills
to the physics student. Of these two, learning mathematics demands more
time.

Usually, there is just one course on mathematical methods in the initial
semester of the 4-semester MSc Physics program. The topics included in the
course are usually chosen for immediate use in the core physics part, while
new tools are needed in teaching the advanced topics. This leads to a basic
gap in the training.

In this book we try to bridge this gap. The book starts at the undergraduate
level when a student enters the MSc program and goes up to the tools needed
for advanced courses.

Such a book will be useful to students, and to their teachers as well, for all
the four semesters. It will be more like a companion reader, because different
methods crop up in different courses, and there is no reason that a student
has to learn all the methods in just the first semester.

Such a book can result in a massive, dull, and forbidding encyclopedia of a
book, whereas what we are attempting is not a book for reference but a book
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primarily for inspiring students to learn and appreciate mathematical tools.

There are a great many, exhaustive, books in the tradition of Courant-
Hilbert, Morse-Feshbach, B. Simon, W. Thirring, Choquet-Bruhat-DeWitt-
Morette-Bleick or V. Balakrishnan, to name just the few most venerable
authors. And our task is to prepare the student to approach those books
with confidence.

An analogy might help to illustrate our purpose.

Being a good citizen does not mean having to read all the law books in order
to be on the right side of law. There must be a minimum set of guidelines
and public instructions to avoid going astray.

This book on mathematical physics will be such a set of instructions. And
the book should be fun to read!

We know from our experience as teachers that many physics students, and
even senior researchers, feel hesitation and discomfort when approaching
mathematical topics. Our idea is to make them overcome that feeling. If
this book succeeds in doing that, it would have served its purpose.

Pankaj Sharan and Ashok K. Kapoor
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Part I: Basics

If people do not believe that mathematics is simple, it is only
because they do not realize how complicated life is.

John von Neumann

Note to the reader: This part is not a complete or exhaustive summary of school

level and undergraduate mathematics. It is meant for entertainment. If you are

the serious type, you can directly go over to Part II.
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Chapter 1

Logic and Set Theory

1.1 Statements and Truth values

Logic is the backbone of mathematics. The purpose of logic is to arrive at a
true statement, starting from another statement whose truth is given.

Logic, and therefore also mathematics, deal with statements or proposi-
tions. All mathematics is expressed in propositions or statements which are
either true or false. Statements like ’it might rain tomorrow’ have no place
in mathematics.

To every statement, let us denote it by P corresponds a statement which is
exactly its opposite, or negation, denoted by ∼ P . If P is true, then ∼ P
is false, and if P is false, then ∼ P is true.

Simple statements can be combined in many ways to make compound
statements.

There is conjunction, denoted by & and pronounced ’and’. Given P and
Q, P&Q is true if both P and Q are separately true, in all other cases it is
false.

Two statements P and Q can also be combined through disjunction, de-
noted by ∨ and pronounced ‘or’. P ∨ Q is true if any one or both of these
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statements P,Q are true. It is false when both are false.

The ordinary language is not totally clear about the use of ‘or’ . Sometimes
it is used in the sense that (P or Q) is true if only either of them is true,
bot not both. And sometimes, it is true if both P and Q could also true. The
logical circuit theory therefore uses ‘XOR’, the exclusive ‘or’, to remove this
ambiguity.

1.2 Truth Tables

A truth table is to show the various truth values. For negation it is :

P ∼ P
T F
F T

where T and F stand for ‘true’ and ‘false’ respectively.

The conjunction of two sentences P and Q, P&Q denotes the ordinary
meaning of ‘and’ :

P Q P&Q
T T T
T F F
F T F
F F F

The disjunction of two sentences P ∨ Q (to be read as ‘P or Q’) is false
when both P and Q are false, but is true in all other cases.

P Q P ∨Q
T T T
T F T
F T T
F F F
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1.3 Implication

The implication P → Q denotes the relation ‘if P then Q’. By definition
its truth table is

P Q P → Q
T T T
T F F
F T T
F F T

The sentence P is called the antecedent or hypothesis and Q the conse-
quent or conclusion. Some explanation is necessary here :

The idea behind ‘if P then Q’ or P → Q is that P implies Q. That is, if it
is known that P is true then we can validly infer that Q is true. This will
make the compound sentence P → Q true. But if P is true and Q is found
to be false then P → Q must be false.

But what happens when P is false?

There are no guarantees that Q will be true or false if the precondition P is
not satisfied. Therefore, the definition of P → Q is given so that when P is
false, P → Q is true regardless of the truth or falsehood of Q.

As an illustration, let P be the statement 1 = 0 (which we know is false).
And let Q be 3 = 7 (false) and R be the statement 2 < 8 (which is true).
Then both P → Q and P → R are true:
If 1 = 0 then 3 = 7 (true)
If 1 = 0 then 2 < 8 (also true).

The sentence ‘if ... then’ is given the value true because we are safe in the
knowledge that the antecedent is false anyway.

Beginners in logic get a feeling that unlike conjunction and disjunction the
implication is not a compound sentence but a process of arriving at the truth
of the conclusion given the truth of the hypothesis.

This feeling is not misplaced. This actually is the purpose of implication. If
we find that P → Q is a tautology, that is, it is always true independently of
the truth values of its components P , and Q, then we can draw the conclusion
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as follows :

P → Q True always.
P True.

Therefore Q is true Because
Q being false
is not allowed.

A biconditional sentence or equivalence P ↔ Q is just a shorter name for
(P → Q)&(Q→ P ). Its truth table is

P Q P ↔ Q
T T T
T F F
F T F
F F T

It is called equivalence because the antecedent and the consequent are logi-
cally equivalent. From the truth of P we can derive the truth of Q and from
the truth of Q we can derive the truth of P .

The equivalence is symmetric, P ↔ Q is the same as Q↔ P .

1.4 Tautologies

A compound sentence which is always true irrespective of the truth or false-
hood of its components is called a tautology.

For example, (P∨ ∼ P ) is always true which just says either P is true
or its opposite ∼ P is true. This tautology is called the law of excluded
middle, because it means there is no common ground between P and its
exact opposite ∼ P . Equivalently, it says that ‘it is always false that that P
and its opposite ∼ P could both be true’. This later version is called the law
of contradiction.

Some well known tautologies are given in the table below. By using the truth
tables one can check that they are actually always true.
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In Latin tollens means denying and ponens means asserting.

Name Tautology

1 Law of Excluded Middle P∨ ∼ P

2 Law of Contradiction ∼ (P& ∼ P )

Implications

3 Law of Detachment ((P → Q)&P )→ Q

4 Modus tollendo tollens
or Law of Absurdity ((P → Q)& ∼ Q)→∼ P

5 Modus tollendo ponens ((P ∨Q)& ∼ P )→ Q

6 Law of Hypothetical Syllogism ((P → Q)&(Q→ R))→ (P → R)

7 Law of Exportation ((P&Q)→ R)→ (P → (Q→ R))

8 Law of Addition P → (P ∨Q)

Equivalences

9 Law of Double negation P ↔ (∼∼ P )

10 Law of Contraposition (P → Q)↔ (∼ Q→∼ P )

11 De Morgan’s Laws [∼ (P ∨Q)]↔ [∼ P& ∼ Q]

12 De Morgan’s Laws [∼ (P&Q)]↔ [∼ P∨ ∼ Q]

13 Equivalence of implication (P → Q)↔ (∼ P ∨Q)
and disjunction (P ∨Q)↔ (∼ P → Q)↔ (∼ Q→ P )
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Example 1.1 Check the truth values of the tautology ((P → Q)&(Q→ R))→
(P → R).

Let us call S = (P → Q)&(Q→ R). then the tautology is of the form S → (P →
R). Which is false only in the case when S is true and (P → R) is false. We
should just check only this case to make sure that S → (P → R) is a tautology.

P Q R P → Q Q→ R S = (P → Q)&(Q→ R) P → R

T T T T T T T
T T F T F F F
T T T T T T T
T T F T F F F
T F T F T F T
T F F F T F F
T F T F T F T
T F F F T F F

From the table it is clear that whenever P → R is false, so is S. Therefore
S → (P → R) is always true.

Exercise 1.1 Prove the other tautologies given in the table by constructing truth
tables.

1.5 Getting familiar with logical inference

We give some examples below for familiarity with the logical inference.

Take the equivalence (P ∨ Q) ↔ (∼ P → Q) which is actually the last
(number 13). This is illustrated by the following example.

Example 1.2 In a certain university tuition fees are very high but the merito-
rious poor students are admitted and charged lower fees. Let
P= ‘A student is meritorious.’
Q= ‘A student is rich.’
For a general student P ∨ Q is true: either he (or she) is meritorious, or rich or
both. But this is equivalent to ∼ P → Q whose interpretation is ‘if a student is
not meritorious then he (or she) must be rich to get admitted’.
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We also know that P ∨ Q is equivalent to Q ∨ P and so equivalent to ∼ Q → P
which means ‘if a student is not rich then he (or she) must be meritorious’.

The main purpose of logic is to arrive at a conclusion Q when we are given
that a number of premises P1, P2, . . . , Pn are true. This means that we must
be able to show by some means or the other that the implication

(P1&P2& · · ·Pn)→ Q

is a tautology. There are other simpler means too as we shall see.

Example 1.3 Many university departments employ those students who get a
scholarship as teaching assistants. Consider the following sentences :
(1) If a research scholar of the department does not get scholarship then she (or
he) does not teach.
(2) If she (or he) does not teach then her (his) understanding does not improve.
(3) Either her (his) understanding improves or she (he) leaves research.
(4) But she (he) is not leaving research.
(5) Therefore, she (he) is getting scholarship.

Is the conclusion (5) valid?

To analyze this, use the abbreviations for a research scholar:
S= Gets scholarship
T= Teaches
U= Her (His) understanding improves
L= Leaves research.

The premises (1) to (4) and conclusion (5) can be written

P1 ∼ S →∼ T
P2 ∼ T →∼ U
P3 U ∨ L
P4 ∼ L
Q S

The question therefore is : is P1&P2&P3&P4&→ Q a tautology?

We can of course check all the 16 possibilities (24 truth values of 4 sentences
S, T, U, L). But it is easy to proceed step by step. We note that P1&P2 implies
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∼ S →∼ U (by the law of hypothetical syllogism). This is equivalent to U → S
(by law of contraposition). Similarly P3 is equivalent to ∼ U → L (Equivalence of
implication and disjunction) which is, in turn, equivalent to ∼ L → U (by law of
contraposition). Therefore, combining this with P4 =∼ L gives the conclusion S.
Thus the conclusion is valid.

We summarize it as follows :

1 P1 ∼ S →∼ T
2 P2 ∼ T →∼ U
3 1, 2 ∼ S →∼ U
4 from 3 U → S
5 P3 U ∨ L
6 from 5 ∼ U → L
7 from 6 ∼ L→ U
8 P4 ∼ L
9 from 7,8 U

10 Therefore from 9, 4 S

Here is an economic-political argument from Patric Suppes’ book.

Example 1.4 If either salaries are increased or prices go up then there is infla-
tion. If there is inflation, then either the government controls inflation or people
suffer. If people suffer then government becomes unpopular. But the government
is not controlling inflation and the government is not unpopular.

Therefore salaries have not increased. (Yes or No?)

We analyze it as before by symbolizing :
S= salaries increase
Pi= prices increase
I= there is inflation
C= government controls
U= government is unpopular
Ps= people suffer

The premises are
P1 = (S ∨ Pi)→ I
P2 = I → (C ∨ Ps)
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P3 = Ps→ U
P4 =∼ C& ∼ U
and the expected conclusion is
Q =∼ S.

There are many ways to analyze it. One way is suggested here. The last premise
P4 is actually made up of two premises P5 =∼ C and P6 =∼ U . P6 and P3 imply
∼ Ps therefore we have both ∼ Ps and ∼ C. Now look at P2 which involves both
C and Ps. P2 is equivalent to ∼ (C ∨ Ps) →∼ I and we know that ∼ (C ∨ Ps)
is the same as ∼ C& ∼ Ps thus we conclude ∼ I. This combined with P1 gives
∼ (S ∨Pi) which is the same as ∼ S& ∼ Pi. Thus we not only get the conclusion
∼ S but as a byproduct (corollary) the conclusion that ∼ Pi = prices will not
increase.

The law of absurdity occurs often in mathematics. It is often called ‘reductio
ad absurdum’. Very often in order to prove the truth of some statement, we
assume that it is false. Then we are led to a contradiction, which is always
false.
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Chapter 2

Numbers

2.1 Natural Numbers and Integers

Quantitative sciences begin with counting. The numbers 1, 2, ... called nat-
ural numbers or whole numbers are the basis of all mathematics. These
numbers have a natural order (like 5 is greater than 3 and 7 is less than 9
and so on).

Addition and multiplication are defined in the usual manner and rules, like
the sum, or product of two numbers does not depend on the order in which
they are added or multiplied: 5 + 3 = 3 + 5 and 2× 7 = 7× 2. Put in fancy
words, addition and multiplication are commutative. Moreover, there is
the distributive law, essentially stating that 2 × (3 + 4) = 2 × 3 + 2 × 4,
and other similar statements.

If we multiply a number, say 5, with itself, it is called the square of the
number, because if we lay down 5 rows of 5 objects each we get a picture
of a square. Similarly cube and higher powers are defined as repeated
multiplication of a number with itself. The powers are denoted by n2 for
square, n3 for cube, and, more generally by nm, denoting the multiplication
of n with itself m times. It is called the m-th power of n. Powers of the same
number obey the obvious but important rule:

nr × ns = nr+s.

13
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Any set of objects is called countable if it can be put in one-to-one corre-
spondence with natural numbers starting from 1 and increasing. The process
of counting, that is, putting objects in one-to-one correspondence natural
numbers, may end at some final number, then the set is called finite or
counting may go on endlessly, then we say the set is countably infinite.

We can extend the set of natural numbers by adding 0 and negative whole
numbers −1,−2... etc. The process of addition and multiplication can be
extended using the three unique numbers −1, 1 and 0 : if n is any natural
number then

0 + n = n

0× n = 0,

(−1) + 1 = 0,

(−1)× (−1) = 1,

(−1)× n = −n

and so on. The set of all whole numbers, positive and negative, and the zero
is called the set of integers.

It is conventional to omit the symbol for multiplication ×, or replace it with a
dot or period . when there can be no confusion, such as in 1.2.3.4 = 1×2×3×4
and when using algebraic symbols such as 2x or xy.

Example 2.1 What is the sum of the first n natural numbers? One can guess
the formula by observing the first few values of n:

1 + 2 + · · ·+ n =
n(n+ 1)

2
.

To verify that it is indeed the correct formula we can calculate the sum of the first
n + 1 natural numbers by adding (n + 1) to this sum and check if we obtain the
formula for (n+ 1):

(1 + 2 + · · ·+ n) + (n+ 1) =
n(n+ 1)

2
+ (n+ 1) =

(n+ 1)(n+ 2)

2
.

The product of the first n natural numbers is called the factorial of n,
denoted by n! (the only place where exclamation mark appears in the serious
business of mathematical discourse)

n! = 1× 2× · · · × n.
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The factorial has the property that

n! = n× (n− 1)!.

As 1! = 1, this property suggests that we choose, for convenience,

0! = 1.

Factorials appear naturally when we try to place n different objects in a
single line in all possible ways, because we can place any of the n objects in
the leftmost position, and for this choice we can place any of the remaining
(n−1) objects in the second position and so there are n(n−1) possible ways
to fill the first two positions. Similarly for each of these choices, the third
position can be occupied by the remaining (n− 2) objects and so on till we
reach the last position.

When we count the number of ways to choose r < n objects out of n we
encounter factorials even more commonly. Suppose we are required to find
the number of ways to choose 3 objects out of 7, say. If we choose one object
out of 7, we can do it in 7 different ways. For each of these 7 ways we can
choose any of the remaining 6 objects. So there are 7 × 6 ways to choose
two objects out of 7. When we choose the third object, the number of ways
becomes 7×6×5. But we are interested in the choise of three objects, not in
any particular order in which they were drawn. There are 3! different order
in which the same three objects can be chosen. We must divide the total
number of ways by this: So the total number of ways in which 3 objects can
be pulled out of 7 different objects is

7× 6× 5

3!
=

7!

3!(7− 3)!
.

The general formula for number of ways to choose r objects out of n is
denoted by two popular symbols:

nCr =

(
n
r

)
=

n!

r!(n− r)!

2.2 Rational Numbers

Next on the list is the set of rational numbers or fractions. They are
defined via the process of division, which is the reverse of multiplication.
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When we multiply 5 and 3, for example, we get the number 15. But it can
only be divided by numbers 5 and 3, and not by, say, 4. Thus we define a
new set of numbers like 15/4.

But where do we place 15/4 in the increasing order of numbers? If I were to
divide 15 oranges (the favorite fruit of all mathematics school teachers!) to
four children, each will get 3 each out of the 15 and, with the 3 remaining
to be distributed among the four, each will get less than one orange. It is
clear that the number 15/4 will be larger than 3 but less than 4. We write
15/4 = 3 + 3/4, and 3/4 lies between 0 and 1.

Note that for any natural number n,

n

n
= 1, and

n

1
= n.

We can picture all numbers in a single line with larger numbers on the right of
the smaller numbers. Fractions like 15/4 will fall between the whole numbers
3 and 4. What happens when two fractions are compared? Since a fraction
can always be written as an integer (which can be zero) plus a fraction
between 0 and 1, it is enough to compare only fractions within this range in
order to settle the order of any two fractions. And here it is easy because 1/n
is less than 1/m if n is larger than m. The negative fractions can be defined
by multiplying−1 to them and extending the rules of addition, multiplication
etc in the usual way. Thus the line of numbers can be filled up will all rational
numbers, including the integers.

Example 2.2 How many fractions are there?

Are they countable? It may seem that rational numbers like m/n, n 6= 0 are
many more than the natural numbers. But we can put the rationals in one-to-
one correspondence with a set which has all the rational numbers, with many
repetitions of the same rational number! In the following ‘pyramid’ the order of
counting is shown by arrows line after line starting from the top.

1/1
2/1 → 1/2

3/1 → 2/2 → 1/3
4/1 → 3/2 → 2/3 → 1/4

5/1 → . . . → . . . → . . . → 1/5
. . . . . . . . .
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In this procedure of counting the fraction r/s appears as the s-th term on the
(r + s− 1)-th line. There are 1 + 2 + · · ·+ (r + s− 2) = (r + s− 2)(r + s− 1)/2
terms up to the (r + s − 2)-th line, and then s more on the (r + s − 1)-th line.
That makes r/s in correspondence with the natural number

k = s+ (r + s− 2)(r + s− 1)/2.

The upper (or first) integer in a fraction is called the numerator and the
lower or (or second) part is called denominator. Fractions can be added if
they have a common denominator:

m

n
+
k

n
=
m+ k

n
.

Fractions can be multiplied as follows:

n

m
× r

s
=
n× r
m× s

The multiplication rule allows us to add fractions with different denominators
by suitable multiplication to the numerator as well as denominators by the
same number (effectively multiplying by 1) so as to make the denominators
common to both fractions:

3

12
+

7

6
=

3

12
+
(

7

6
× 2

2

)
=

3

12
+

7× 2

6× 2
=

3 + 14

12
=

17

12
.

We can extend the rule of addition of powers of a natural number to all
integer powers. To begin with, the zeroth power of any natural number
should be equal to 1, that is n0 = 1 because

nm × n0 = nm+0 = nm.

Next, n−1 is equivalent to the fraction 1/n because

n× n−1 = n1 × n−1 = n0 = 1,

which is compatible with the multiplication rule if n−1 = 1/n. Similarly,
n−m = 1/nm.
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2.3 Irrational Numbers

We encounter another family of numbers called irrational numbers. Sup-
pose we ask the question, “What is the number x which, when multiplied to
itself gives the number 2 as a result?” The equation

x.x = x2 = 2

defines a number
√

2 which is not a rational number. An irrational number
like
√

2 lies on the border line of all those rational numbers whose squares
are greater than and those whose squares are less than 2.

It is conventional to write 21/2, the ‘half’ power, in place of
√

2, because
21/2 × 21/2 = 21/2+1/2 = 21 = 2.

An equation like

x2 − 2 = 0

is an example of an algebraic equation in which the unknown number
occurs with integral powers and terms appear with rational coefficients.

2.4 Real numbers

There are irrational numbers which are not the solutions of algebraic equa-
tions. They are called transcendental numbers.

The set of all rational and irrational numbers constitute the set of all real
numbers or the real line.

All real numbers can be obtained by a process of gradually better and better
approximation of a sequence of rational numbers.

A sequence of rational numbers a1, a2, . . . , an, . . . is called convergent or a
Cauchy sequence if it has the property that the absolute difference between
any two numbers of the sequence sufficiently down the line diminishes to zero.
Put more precisely, it means this: if we choose a small rational number ε,
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then we can find a whole number N such that for n > N and all p > 0

|an − an+p| < ε.

Here we denote by |a− b| the absolute value of the number: |a− b| = a− b
if a > b, and |a− b| = b− a.

It is important to emphasize that once ε is chosen we have to find
an n such that for all possible choices of p, however large, and
including those depending on n, the difference |an−an+m| can be
made less than ε.

Two convergent sequences of rational numbers an and bn are said to be
equivalent if, given a small rational number ε we can find a sufficiently large
number N such that

|an − bn| < ε, n > N.

The idea is that although the same real number can be defined by many
convergent sequences, all these sequences must be equivalent in the sense
defined above.

A real number is defined by any one of the equivalent Cauchy
sequences, or as we say, by an equivalence class of Cauchy
sequences of rational numbers.

The earlier definition of a real number as lying on the borderline between
two classes of rational numbers (

√
2 is sandwiched between rational numbers

whose squares are greater than or less than 2) is equivalent to this. But we
need not go into details of this.

From now on we use the intuitive notion of real numbers lying on the real
line. The most useful property of real numbers is their being ordered: given
any two real numbers a and b either a < b or a > b, and if neither, they
must be equal. Another property which we take for granted, and looks
obvious, but is an independent axiom, is the Archimedean property of
real numbers: given a positive number a and a positive number b > a, there
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exists a natural number N such that Na > b. This axiom rules out numbers
called ‘infinitesimals’ because a small number can always be made larger than
any number by multiplication by a large enough integer.

The simplest case of a sequence of positive rational numbers which approx-
imates to a real number is a strictly increasing sequence of numbers all
of which are also less than some positive number, or, as we say, bounded
from above. Since the sequence is strictly increasing, and it cannot forever
go up, it has to saturate to some value equal to or below the upper bound.
Similarly, there is a case for a sequence which is strictly decreasing and
bounded from below.

Example 2.3 The base of natural logarithm The number denoted by e (the
base of natural or Napierian logarithm), is the limit of a sequence whose n-th entry
is given by

rn =

(
1 +

1

n

)n

.

These are all positive numbers. Moreover as(
1 +

1

n

)n

= 1 + 1 +
n(n− 1)

1.2n2
+ · · ·+ 1

nn

= 2 +
1

2!

(
1− 1

n

)
+

1

3!

(
1− 1

n

)(
1− 2

n

)
+ · · · 1

n!

(
1− 1

n

)
· · ·
(

1− n− 1

n

)
a comparison of terms in rn+1 and rn, shows that as

1

p!

(
1− p

n+ 1

)
>

1

p!

(
1− p

n

)
for p = 1, . . . , n− 1,

all terms of rn+1 are strictly greater than corresponding terms of rn, and, in
addition, there is the last positive term

1

(n+ 1)!

(
1− 1

n+ 1

)
· · ·
(

1− n

n+ 1

)
.

in rn+1.
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Since factors like (1− p/n) are strictly less than 1,

rn < 1 +
1

1!
+

1

2!
+ · · ·+ 1

n!

< 2 +
1

2
+
(

1

2

)2

+ · · ·+
(

1

2

)n−1

= 2 + 1−
(

1

2

)n−1

< 3,

showing that the sequence rn is bounded from above. Therefore it converges
to a number between 2 and 3.

Example 2.4 We have seen that the base of natural logarithm e can be approx-
imated by the sequence

an =

(
1 +

1

n

)n

.

It is also approximated by equivalent and equally useful sequence,

bn = 1 +
1

1!
+

1

2!
+ · · ·+ 1

n!
.

Example 2.5 There is an old Babylonian recipe around 500 BCE, to calculate
the square root of 2 by a sequence of fractions. It is approximated by the sequence
a1, a2, . . . with a starting number a1 chosen arbitrarily. The recipe is given by

an+1 =
an
2

+
1

an
.

Suppose we calculate
√

2 starting with a1 = 1, then we obtain the sequence,,

a1 = 1, a2 =
3

2
, a3 =

17

12
, a4 =

577

408
, a5 =

665857

470832
, · · ·

The last approximation to
√

2 by a5 is correct to ten decimal places!

Exercise 2.1 The method for approximating the square root of 2 as given in the
example above was re-discovered by Isaac Newton, and it is called the Newton-
Raphson method in numerical analysis. The recipe to find the square root of a
positive number A is

an+1 =
1

2

(
an +

A

an

)
.
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Plot the graph y = x2 − A,A > 0. The square-root ±
√
A are the x values where

the graph cuts the x=axis (that is y = 0). Verify that the Babylonian-Newton-
Raphson recipe is this:

(1) choose any non-zero initial value of x, say a1

(2) find the corresponding point on the graph

(3) draw a tangent line from that point

(4) find where it meets the x-axis, let that point be x = a2

(5) go to step (1) and repeat the steps with this as initial value.

Example 2.6 The simplest convergent sequence of rational numbers is an = 1/n.
It is strictly decreasing

1

n
− 1

n+ p
=

p

n(n+ p)
> 0 for all n,

and converges to zero.

It is a Cauchy sequence because given a small positive rational number 1 > ε > 0,
we can make

p

n(n+ p)
< ε

by choosing n > [1/ε]. Here [ ] represents the integer part of the number inside it.

2.5 Binomial Theorem

Suppose we take the n-th power of (1 + x), where x is any real number,

(1 + x)n = (1 + x)× · · · × (1 + x).

The multiplication on the right hand side will be an expression with all
powers of x from 0 to n. The 0-th power is just 1 taken from each of the
factors; the first power will occur with a factor n because there are n ways
choose x from one of the factors and 1 from the remaining n− 1. Similarly,
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x2 will occur as many times as we choose x from two factors and 1 from the
remaining factors. Similarly for other powers. Thus

(1 + x)n = 1 +n C1x+ · · ·+n Crx
r + · · ·+n Cnx

n

= 1 + nx+
n(n− 1)

2!
x2 + · · ·

+
n(n− 1) · · · (n− r + 1)

r!
xr + · · ·+ xn

We shall see later that the binomial theorem holds for fractional powers
as well. In that case the symbols nCr have no meaning of course, but the
expression in the second equality above makes sense. Also, in that case, the
right hand side wlll not contain a finite number of terms, but an infinite
series.

2.6 Limits

2.7 Infinite series

The sum of a sequence of real numbers like

S = a0 + a1 + · · ·+ an + · · ·

has a meaning only if the partial sums

s0 = a0 s1 = a0 + a1, . . . sn = a0 + a1 + · · ·+ an, . . .

are a convergent sequence. The limit of s1, s2, . . . , sn, . . . is called the sum of
the infinite series.

A necessary consequence of a convergent series is that the higher terms of
the series should ultimately go to zero: that is, an → 0 as n→∞. But this
is not a sufficient condition, as can be seen by the example of the harmonic
series

1 +
1

2
+

1

3
+ · · ·+ 1

n
+ · · · .



24 CHAPTER 2. NUMBERS

Here an = 1/n→ 0 as n→∞, but

|sn − sn+p| =
1

n+ 1
+ · · ·+ 1

n+ p

cannot be made as small as possible for all values of p. We need only to
choose p = n. then

|sn − sn+p| =
1

n+ 1
+ · · ·+ 1

2n
, (n terms)

>
1

2n
+ · · ·+ 1

2n

=
1

2

Therefore the sequence sn is not a convergent sequence and the harmonic
series is not convergent to a sum. In fact, as all terms are positive, it diverges
to +∞.

Example 2.7 The geometric series

s = 1 + x+ x2 + · · ·xn + · · ·

will converge only if |x| < 1 because the individual terms of the series xn must go
to zero as n→∞.

The partial sum of the first n terms is

sn = 1 + x+ x2 + · · ·xn =
1− xn+1

1− x
,

which follows easily from multiplying sn by x and subtracting it from sn. As
|x| < 1, xn+1 → 0, and the sum converges to

s =
1

1− x
, |x| < 1.



Chapter 3

Differential equations

Physics is the most basic of the sciences. There are physical quantities which
are measured by experiments. We try to find relations between them. Every
physical quantity, like the position of a particle, or the time, is represented
by a number or a set of numbers. Relations between numbers are governed
by functions, like the position of a particle as a function of time.

But that is not all.

The functions representing relationships satisfy laws which are mostly dif-
ferential equations, like equation of motion in our example.

Why are differential equations so prevalent in physics?

Differential equations have the power to summarize an infinity of physical
situations in a single formula.

That is what makes physics so fundamental, and the knowledge of mathe-
matics so essential.

Example 3.1 A small body is dropped from a height, and the time taken for it
to hit the ground is noted. The data for different bodies and heights for the time
taken seems to fit the the formula

h = at2. (3.1)

25
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This provides the differential equation (after differentiating twice),

d2h

dt2
= 2a. (3.2)

A general solution of this differential equation is

h = c+ bt+ at2 (3.3)

where b and c are arbitrary constants of integration.

The solutions to this equation contain more information than the data from which
it was derived!

For example, it includes the cases when the body is thrown vertically upwards or
downwards with some initial velocity, and the height is measured not necessarily
form the point at which it was dropped.

Example 3.2 The differential equation which summarizes the family of all cir-
cles of unit radius in the x-y plane.

A circle with the center at (a, b) and unit radius consists of points (x, y) which are
related by

(x− a)2 + (y − b)2 = 1. (3.4)

Differentiating with respect to x, we get calling y′ = dy/dx

2(x− a) + 2(y − b)y′ = 0. (3.5)

Differentiating it once more and denoting y′′ = d2y/dx2,

1 + (y′)2 + (y − b)y′′ = 0.. (3.6)

We can eliminate a and b from the three equations (3.4), (3.5) and (3.6) and get
the following differential equation

y′′ = (1 + (y′)2)3/2. (3.7)

Exercise 3.1 (a) Solve the differential equation (3.7) and verify that its solutions
indeed represent all circles with unit radius.
(b) What is the differential equation for the family of all circles with the center
(0, 0) at the origin and arbitrary radius?

Hint: (a) Solve in two steps. First solve the equation du/dx = (1 + u2)3/2 where
u = y′. Then, once you have y′ as a function of x, solve for y. (b) dy/dx = −x/y.
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3.1 Simplest differential equations

The simplest differential equation is, of course nor different that just inte-
grating a function:

dy

dx
= f(x),

whose solution is

y =
∫
f(x) dx+ c

where the first part is the indefinite integral of the function f(x) and c
is a constant, called the constant of integration. It occurs because on
differentiating a constant gives zero. The ease or difficulty of integration
depends how simple or difficult the function f(x). The indefinite integrals of
some simple functions are tabulated in the last section of this chapter.

3.2 Indefinite integrals of elementary func-

tions

f(x)
∫
f(x)dx

xa (a 6= −1) xa+1/a+ 1
1/x lnx
eax eax/a
ax ax/ ln a

sinx − cosx
cosx sinx
tanx − ln cosx
cotx ln sinx
sinhx coshx
coshx sinhx

1/(1 + x2) tan−1 x
1/(1− x2) (1/2) ln[(1 + x)/(1− x)]

1/
√

1− x2 (x < 1) sin−1 x

1/
√
x2 − 1 (x > 1)
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Integrals of the type ∫ 1

ax2 + bx+ c
dx

occur quite often and they can be brought to the form∫ 1

1 + y2
dy

if

∆ ≡ 4ac− b2 > 0

or, to the form ∫ 1

1− y2
dy

if ∆ < 0. The result is,∫ 1

X
dx =

2√
∆

tan−1
2ax+ b√

∆
(∆ > 0)

∫ 1

X
dx = − 1√

−∆
ln

[
2ax+ b−

√
−∆

2ax+ b+
√
−∆

]
(∆ < 0)

If ∆ = 4ac − b2 = 0, then a and c have the same sign. By using −X
instead of X we can take both a and c as positive. Then b = ±2

√
ac and so

X = (
√
ax±

√
c)2 = (ax+ b/2)2/a. whose integral is∫ 1

X
=

−1

ax+ b/2
.

3.3 Series solutions

The series solutions of sinx and cosx were obtained by Isaac Newton for
approximating those functions using methods equivalent to differential equa-
tions. Newton had invented the calculus, so it should not be surprising.

If sin x is to be approximated by

y = sinx = a0 + a1x+ a2x
2 + · · ·
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it is clear from the geometric definition of sin that if x is expressed in radians,
and if x is very small, sin x ≈ x + · · ·, so that a0 = 0 and a1 = 1. After two
differentiations y′′ = −y and so

2a2 + 3.2a3x+ 4.3a4x
2+ = −[x+ a2x

2 + a3x
3 + · · ·].

Comparing, coefficients of powers of x we see that

a2 = 0

a3 = − 1

3.2

a4 = − 1

4.3
a2

· · · = · · ·
an = − 1

n(n− 1)
an−2

· · · = · · · .

Thus all the even powers have zero coefficients and the odd powers survive
with alternating signs and inverse of factorials

sinx = x− 1

3!
x3 +

1

5!
x5 − · · · .

In a similar manner one can derive

cosx = 1− 1

2!
x2 +

1

4!
x4 − · · · .

A more interesting case is that of the binomial theorem for any power: If

y = (1 + x)r, where r is a real number

then

y′ = r(1 + x)r−−1 = r
y

1 + x
.

Expressing y as a power series, (the constant term has to be equal to 1
because at x = 0, y = 1),

y = 1 + a1x+ a2x
2 + · · ·+ anx

n + · · ·
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(1 + x)(a1 + 2a2x+ 3a3x
2 + · · ·+ nanx

n−1 + · · ·) =

r(1 + a1x+ a2x
2 + · · ·+ anx

n + · · ·)

Comparing coefficients of powers on the two sides

a1 = r

(2a2 + a1) = ra2

· · · = · · ·
nan + (n− 1)an−1 = ran−1

· · · = · · ·

we obtain the standard formula

(1 + x)r = 1 + rx+
r(r − 1)

2!
x2 + · · ·

+
r(r − 1) · · · (r − p+ 1)

p!
xp + · · ·


